Human 5′-Deoxy-5′-Methylthioadenosine Phosphorylase: Kinetic Studies and Catalytic Mechanism

  • Vincenzo Zappia
  • Fulvio Della Ragione
  • Gabriele Pontoni
  • Vincenzo Gragnaniello
  • Maria Cartenì-Farina
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


5′-Deoxy-5′-methylthioadenosine (MTA), is a sulfur nucleoside ubiquitously distributed in micromolar amounts in nature (1–4). The molecule originates from S-adenosylmethionine (AdoMet) through several metabolic pathways involving in all instances a nucleophilic attack to the activated methylenic γ-carbon adjacent to the electron withdrawing trivalent sulfur (1–10).


Purine Nucleoside Phosphorylase Phosphorylase Activity Relative Free Energy Product Inhibition Study Methylthioadenosine Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Della Ragione, M. Cartenì-Farina and V. Zappia, 5′-Deoxy-5′-methylthioadenosine: novel metabolic and physiological aspects, in “The Physiology of Polyamines”, U. Bachrach and H. Eimer eds., CRC New York, in. press Google Scholar
  2. 2.
    H.G. Williams-Ashman, J. Seidenfeld and P. Galletti, Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine, Biochem. Pharmacol. 31: 277 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Seidenfeld, J. Wilson and H.G. Williams-Ashman, Androgenic regulation of 5′-deoxy-5′-methylthioadenosine concentration and methylthioadenosine phosphorylase activity in relation to polyamine metabolism of rat prostate, Biochem. Biophys. Res. Commun. 95: 1861 (1980)PubMedCrossRefGoogle Scholar
  4. 4.
    F. Della Ragione, M. Cartenì-Farina, M. Porcelli, G. Cacciapuoti and V. Zappia, High performance liquid Chromatographic analysis of 5′-methylthioadenosine in rat tissues, J. Chromatogr. 226: 243 (1981)PubMedCrossRefGoogle Scholar
  5. 5.
    N. Kamatani and D.A. Carson, Dependence of adenine production upon polyamine synthesis in cultured human lymphoblasts, Biochim. Biophys. Acta 675: 344 (1983)CrossRefGoogle Scholar
  6. 6.
    S. Nishimura, Y. Taya, Y. Kuchino and Z. Ohashi, Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: transfer of the 3-amino-3-carboxypropyl group from S-adenosylmethionine, Biochem. Biophys. Res. Commun. 57: 702 (1974)PubMedCrossRefGoogle Scholar
  7. 7.
    H.J. Munch and R. Thiebe, Biosynthesis of the nucleoside Y in yeast tRNA-Phe: incorporation of the 3-amino-3-carboxypropyl-group from methionine, FEBS Letters 51: 257 (1975)PubMedCrossRefGoogle Scholar
  8. 8.
    G.L. Stoner and M.A. Eisenberg, Purification and properties of 7, 8-diaminopelargonic acid aminotransferase. An enzyme in the biotin biosynthetic pathway, J. Biol. Chem. 250: 4029 (1975)PubMedGoogle Scholar
  9. 9.
    Y. Taya, Y. Tanaka and S. Nishimura, Cell-free biosynthesis of discadenine, a spore germination inhibitor of Dictostelium discoideum, FEBS Letters 89: 326 (1978)PubMedCrossRefGoogle Scholar
  10. 10.
    S.K. Shapiro and D.J. Ehninger, The enzymatic decomposition of S-adenosylmethionine, J. Biol. Chem. 233: 631 (1958)PubMedGoogle Scholar
  11. 11.
    J.A. Duerre, A hydrolytic nucleosidase acting on S-adenosylhomocysteine and on 5′-methylthioadenosine, J. Biol. Chem. 237: 3737 (1962)Google Scholar
  12. 12.
    F. Della Ragione, M. Porcelli, M. Cartenì-Farina and V. Zappia, Escherichia coli S-adenosylhomocysteine/5′-methylthioadenosine nucleosidase: purification, substrate specificity and mechanism of action, Biochem. J. 232: 335 (1985)PubMedGoogle Scholar
  13. 13.
    S. Shimizu, T. Abe, S. Shiozaki and H. Yamada, Catabolism of methylthioadenosine and S-adenosylhomocysteine in microorganisms, in the “International Conference on Polyamines in Life Sciences”, Lake Yamanake, Japan, July 14–18 (1986)Google Scholar
  14. 14.
    M. Cartenì-Farina, A. Oliva, G. Romeo, G. Napolitano, M. De Rosa, A. Gambacorta and V. Zappia, 5′-Methylthioadenosine phosphorylase from Caldariella acidophila, Eur. J. Biochem. 101: 317 (1979)CrossRefGoogle Scholar
  15. 15.
    A.B. Guranowski, P.K. Chiang and G. Cantoni, 5′-Methylthioadenosine nucleosidase: purification and characterization of the enzyme from Lupinus luteus seeds, Eur. J. Biochem. 114: 293 (1981)PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Sugimoto, T. Toraya and S. Fukui, Studies on the metabolic role of 5′-methylthioadenosine in Ochromonas malhamensis, Arch. Microbiol. 108: 175 (1976)PubMedCrossRefGoogle Scholar
  17. 17.
    V. Zappia, P. Galletti, M. Cartenì-Farina and L. Servillo, A coupled spectrophotometric enzyme assay for methyltransferases, Anal. Biochem. 58: 130 (1974)PubMedCrossRefGoogle Scholar
  18. 18.
    N. Kamatani and D.A. Carson, Abnormal regulation of methylthioadenosine and polyamine metabolism in methylthioadenosine phosphorylase-deficient human leukemic cell lines, Cancer Res. 40: 4178 (1980)PubMedGoogle Scholar
  19. 19.
    J.S. Mills, G.C. Mills and D.J. McAdoo, Isolation and identification of 5′-methylthioadenosine sulfoxide from human urine, Nucleosides and Nucleotides 2: 45 (1983)CrossRefGoogle Scholar
  20. 20.
    M. Cartenì-Farina, F. Della Ragione, G. Cacciapuoti, M. Porcelli and V. Zappia, Transport and metabolism of 5′-methylthioadenosine in human erythrocytes, Biochim. Biophys. Acta 727: 221 (1983)PubMedCrossRefGoogle Scholar
  21. 21.
    G.C. Mills, F.C. Schmalstreg and R.M. Goldblum, Urinary excretion of modified purines and nucleosides in immunodeficient children, Biochem. Med. 34: 37 (1985)PubMedCrossRefGoogle Scholar
  22. 22.
    R.L. Pajula and A. Raina, Methylthioadenosine, a potent inhibitor of spermine synthase from bovine liver, FEBS Letters 99: 343 (1979)PubMedCrossRefGoogle Scholar
  23. 23.
    T.M. Savarese, S-H. Chu, M-Y Chu and R.E. Parks Jr, 5′-deoxy-5′-methylthioadenosine phosphorylase-III: role of the enzyme in the metabolism and action of 5′-halogenated adenosine analogs, Biochem. Pharmacol. 34: 361 (1981)CrossRefGoogle Scholar
  24. 24.
    T.M. Savarese, A.J. Connistra, R.E. Parks Jr, J.A. Secrist III, A.J. Shorknacy and J.A. Montgomery, 5′-deoxy-5′-methylthioadenosine phosphorylase IV: biological activity of 2-fluoroadenine substituted 5′-deoxy-5′-methylthioadenosine analogs, Biochem. Pharmacol. 36: 1881 (1987)PubMedCrossRefGoogle Scholar
  25. 25.
    N. Kamatani, W.A. Nelson-Rees and D.A. Carson, Selective killing of human malignant cells deficient in methylthioadenosine phosphorylase, a purine metabolic enzyme, Proc. Natl. Acad. Sci USA 78: 1219 (1981)PubMedCrossRefGoogle Scholar
  26. 26.
    V. Zappia, A. Oliva, G. Cacciapuoti, P. Galletti, G. Mignucci and M. Cartenì-Farina, Substrate specificity of 5′-methylthioadenosine phosphorylase from human prostate, Biochem. J. 175: 1043 (1978)PubMedGoogle Scholar
  27. 27.
    D.L. Garbers, Demonstration of 5′-methylthioadenosine phosphorylase activity in various rat tissues: some properties of the enzyme from rat lung, Biochim. Biophys. Acta 523: 82 (1978)PubMedGoogle Scholar
  28. 28.
    G. Cacciapuoti, A. Oliva and V. Zappia, Studies on phosphate-activated 5′-methylthioadenosine nucleosidase from human placenta, Int. J. Biochem. 9: 35 (1978)PubMedCrossRefGoogle Scholar
  29. 29.
    T.M. Savarese, G.W. Crabtree and R.E. Parks Jr, 5′-methylthioadenosine phosphorylase-I: substrate activity of 5′-deoxyadenosine with the enzyme from Sarcoma 180 cells, Biochem. Pharmacol. 30: 189 (1981)PubMedCrossRefGoogle Scholar
  30. 30.
    F. Della Ragione, M. Cartenì-Farina, V. Gragnaniello, M.I. Schettino and V. Zappia, Purification and characterization of 5′-deoxy-5′-methylthioadenosine phosphorylase from human placenta, J. Biol. Chem. 261: 12324 (1986)PubMedGoogle Scholar
  31. 31.
    J.D. Stoeckler, R.P.A. Agarwal, K. Schmid and R.E. Parks Jr. Purine nucleoside phosphorylase from human erythrocyte: physicochemical properties of the crystalline enzyme, Biochemistry 17: 278 (1978)PubMedCrossRefGoogle Scholar
  32. 32.
    K. Radika and D. Northrop, A new diagnostic for enzymatic mechanisms using alternative substrates, Anal. Biochem. 141: 413 (1984)PubMedCrossRefGoogle Scholar
  33. 33.
    B-G Chun, W.K. Paik and S. Kim, Simple separation of adenine and adenosyl-sulfur compounds by high performance liquid chromatography, J. Chromatogr. 264: 321 (1983)PubMedCrossRefGoogle Scholar
  34. 34.
    T.M. Savarese, The role of 5′-deoxy-5′-methylthioadenosine phosphorylase in the metabolism and action of 5′-deoxyadenosine, 5′-deoxy-5′-methylthioadenosine, and their analogs in murine tumor cells, Ph. Thesis (1980)Google Scholar
  35. 35.
    D. Fell, L.E. Benjamin and R.D. Steele, Determination of adenosine and S-adenosyl derivatives of sulfur amino acids in rat liver by high performance liquid chromatography, J. Chromatogr. 345: 150 (1985)PubMedCrossRefGoogle Scholar
  36. 36.
    P.L. Ipata and M. Camici, An enzymatic radioactive assay to determine ribose-1-phosphate in tissues, Anal. Biochem. 112: 151 (1981)PubMedCrossRefGoogle Scholar
  37. 37.
    G. Cimino, A. Crispino, S. De Stefano, M. Gavagnin and G. Sodano, A naturally occurring analog of methylthioadenosine (MTA) from the nudibranch mollusc Doris verrucosa, Experientia 42: 1301 (1986)CrossRefGoogle Scholar
  38. 38.
    M. Porcelli, G. Cacciapuoti, G. Cimino, M. Gavagnin, G. Sodano and V. Zappia, Characterization and biogenesis of 5′-methylthioxylofuranosyladenine, a new natural analog of 5′-methylthioadenosine, in this bookGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Vincenzo Zappia
    • 1
  • Fulvio Della Ragione
    • 1
  • Gabriele Pontoni
    • 1
  • Vincenzo Gragnaniello
    • 1
  • Maria Cartenì-Farina
    • 1
  1. 1.Department of Biochemistry of Macromolecules, First Medical SchoolUniversity of NaplesNaplesItaly

Personalised recommendations