Advertisement

The Biological Functions of Amine Oxidases and their Reaction Products: An Overview

  • B. Mondovì
  • P. Riccio
  • E. Agostinelli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Abstract

Amine oxidases (AO) are enzymes widely distributed among all living organisms.1 Their widespread occurrence accounts for an undoubtedly relevant biological function in biogenic amine metabolism. AOs represent a class of enzymes heterogenous in structure, catalytic mechanism and mode of substrate oxidation. Mono-, di- and polyamines, as well as several N-acyl amines, are oxidatively deaminated by AOs in a reaction consuming O2 and H2O and producing the corresponding aldehyde, the removed amine moiety and H2O2 in stoichiometric amounts according to the following equations:
$${\text{R - C}}{{\text{H}}_{\text{2}}}{\text{ - N}}{{\text{H}}_{\text{2}}}{\text{ + }}{{\text{O}}_{\text{2}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O }} \to {\text{R - CHO + N}}{{\text{H}}_{\text{3}}}{\text{ + }}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$$
cleavage at a primary amino group (terminal oxidation reaction).

Keywords

Amine Oxidase Diamine Oxidase Polyamine Oxidase Pyrroloquinoline Quinone Amine Oxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Mondovi, “Structure and Functions of Amine Oxidases”, CRC Press, Boca Raton, FL (1985).Google Scholar
  2. 2.
    N. Seiler, Inhibition of enzymes oxidizing polyamines, in; “Inhibition of Polyamine Metabolism”, P. McCann, A. E. Pegg and A. Sjoerdsma eds., Academic Press, NY (1987).Google Scholar
  3. 3.
    H. Kumagai and H. Yamada, Bacterial and fungal amine oxidases, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton, FL (1985).Google Scholar
  4. 4.
    A. Rinaldi, G. Floris and A. Giartosio, Plant amine oxidases, in “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  5. 5.
    B. Mondovi and P. Riccio, Animal intracellular amine oxidases, in: “Structure and Functions of Amine Oxidases”, B. Mondovi, ed., CRC Press, Boca Raton FL (1985).Google Scholar
  6. 6.
    G. Pettersson, Plasma amine oxidase, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  7. 7.
    A. Finazzi-Agro, Optical and spectroscopic properties of copper-containing amine oxidases, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  8. 8.
    G. Rotilio, Spectroscopic and chemical properties of the amine oxidase copper, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  9. 9.
    H. Dolezalova, M. Stepita-Klauco, J. Kucera, H. Uchimura and M. Hirano, Blood concentrations of monoacylcadaverines in schizophrenia, in: “Mass Spectrometry in Drug Metabolism”, A. Frigerio and E. L. Ghisalberti eds., Plenum Press NY (1977).Google Scholar
  10. 10.
    F. N. Bolkenius, P. Bey and N. Seiler, Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role, Biochim. Biophys. Acta 838: 69 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    N. Seiler, F. N. Bolkenius and B. Knodgen, The influence of catabolic reaction on polyamine excretion, Biochem. J. 225: 219 (1985).PubMedGoogle Scholar
  12. 12.
    R. A. Alacorn, Acrolein IV. Evidence for the formation of the cytotoxic aldehyde acrolein from enzymatically oxidized spermine or spermidine, Arch. Biochem. Biophys. 137: 362 (1970).Google Scholar
  13. 13.
    B. W. Kimes and D. R. Morris, Preparation and stability of oxidized polyamines, Biochim. Biophys Acta 228: 223 (1971).PubMedGoogle Scholar
  14. 14.
    T. A. Smith, Purification and properties of the polyamine oxidase from barley plants, Phytochemistry 11: 899 (1972).CrossRefGoogle Scholar
  15. 15.
    Y. Suzuki and H. Yanagisawa, Purification and properties of maize polyamine oxidase: a flavoprotein, Plant Cell Physiol. 21: 1085 (1980).Google Scholar
  16. 16.
    E. Holtta, P. Pulkkinen, K. Elfving and J. Janne, Oxidation of polyamines by diamine oxidase from human seminal plasma, Biochem. J. 145: 373 (1975).PubMedGoogle Scholar
  17. 17.
    C. L. Lobenstein-Verbeek, J. A. Jongejan, J. Frank, and J. A. Duine, Bovine serum amine oxidase: a mammalian enzyme having covalently bound PQQ as prosthetic group, FEBS Lett. 170: 305 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    P. F. Knowles, K. B. Pandeya, F. X. Rius, C. M. Spencer, R. S. Moog, M. A. McGuirl and D. M. Dooley, The organic cofactor in plasma amine oxidase: evidence for pyrroloquinoline quinone and against pyridoxal phosphate, Biochem. J. 241: 603 (1987).PubMedGoogle Scholar
  19. 19.
    C. Maslinski, T. Bieganski, W. A. Fogel and M. A. Kitler, Diamine oxidase in developing tissues, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  20. 20.
    J. Sattler, R. Hesterberg, W. Lorenz, M. Ennis, C. D. Stahlknecht and J. Kusche, Pathophysiological functions of diamine oxidase: an evaluation in animal studies using a probabilistic model with several types of causal relationships, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  21. 21.
    A. Perin, A. Sessa and M. A. Desiderio, Diamine oxidase in regenerating and hypertrophic tissues, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  22. 22.
    S. B. Baylin and G. D. Luk, Diamine oxidase activity in human tumors: clinical and biological significance, in: “Structure and Functions of Amine Oxidases” B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  23. 23.
    G. Bombardieri, A. Milani and L. Rossi, Copper-dependent amine oxidases: clinical aspects, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  24. 24.
    S. B. Baylin, M. A. Beaven, R. M. Krauss and H. R. Keiser, Response of plasma histaminase to small doses of heparin in normal subjects and patients with hyperlipoproteinemia, J. Clin. Invest. 52: 1985 (1973).PubMedCrossRefGoogle Scholar
  25. 25.
    L. D’Agostino, C. Ciacci, B. Daniele, M. V. Barone, R. Sollazzo and G. Mazzacca, Plasma diamine oxidase (DAO) and heparin, Dig. Pis. Sci. 29: 1070 (1984).CrossRefGoogle Scholar
  26. 26.
    W. A. Gahl and H. C. Pitot, Polyamine degradation in foetal and adult bovine serum, Biochem. J. 202: 603 (1982).PubMedGoogle Scholar
  27. 27.
    F. Buffoni, Histaminase and related amine oxidases, Pharmacol. Rev. 18: 1663 (1966).Google Scholar
  28. 28.
    W. A. Gahl, A. M. Vale and H. C. Pitot, Spermidine oxidase in human pregnancy serum, Biochem. J. 201: 161 (1982).PubMedGoogle Scholar
  29. 29.
    B. Mondovi, G. Rotilio, A. Finazzi-Agro and A. Scioscia-Santoro, Purification of pig kidney diamine oxidase and its identity with histaminase, Biochem. J. 91: 408 (1964).PubMedGoogle Scholar
  30. 30.
    M. P. Argento-Ceru and F. Autuori, Localization of diamine oxidase in animal tissues, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  31. 31.
    N. Seiler, F. N. Bolkenius, B. Knodgen and P. Mamont, Polyamine oxidase in rat tissues, Biochim. Biophys. Acta 615: 480 (1980).PubMedGoogle Scholar
  32. 32.
    E. Holtta, Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16: 91 (1977).PubMedCrossRefGoogle Scholar
  33. 33.
    N. Seiler, Acetylpolyamines as substrates of amine oxidases, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  34. 34.
    N. Seiler and M. J. Al-Therib, Putrescine catabolism in mammalian brain, Biochem. J. 144: 29 (1974).PubMedGoogle Scholar
  35. 35.
    V. Z. Gorkin, Qualitative alteration (transformation) in catalytic activity of amine oxidases, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  36. 36.
    V. Z. Gorkin, “Amine Oxidases in Clinical Research”, Pergamon, Oxford (1983).Google Scholar
  37. 37.
    F. Buffoni, G. Banchelli, G. Ignesti, R. Pirisino and L. Raimondi, The presence of an inhibitor of benzylamine oxidase in human blood plasma, Biochem. J. 211: 767 (1983).PubMedGoogle Scholar
  38. 38.
    P. Guerrieri, A. Finazzi-Agro, M. T. Costa, G. Rotilio and B. Mondovi, Salt effect on diamine oxidase activity, Ital. J. Biochem. 25: 160 (1976).PubMedGoogle Scholar
  39. 39.
    W. Schmutzler, O. Goldschmidt, K. P. Bethge and J. Knop, The release of guinea pig liver histaminase and some of its properties, Int. Arch. Allergy 36: 45 (1969).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Stevanato, M. Porchia, O. Befani, B. Mondovi and A. Rigo, Characterization of free and immobilized amine oxidases, submitted for publication.Google Scholar
  41. 41.
    N. Seiler, F. N. Bolkenius and O. M. Rennert, Interconversion, catabolism and elimination of the polyamines, Med. Biol. 59: 334 (1981).PubMedGoogle Scholar
  42. 42.
    S. Razin, U. Bachrach and I. Gery, Formation of β-alanine from spermine and spermidine by Pseudomonas Aeruginosa, Nature 181: 700 (1958).PubMedCrossRefGoogle Scholar
  43. 43.
    U. Bachrach, S. Abzug and A. Bekierkunst, Cytotoxic effect of oxidized spermine on Ehrlich ascites cells, Biochim. Biophys. Acta 134: 174 (1967).Google Scholar
  44. 44.
    U. Bachrach, Oxidized polyamines, ANN. N. Y. Acad. Sci. 171: 939 (1970).CrossRefGoogle Scholar
  45. 45.
    J. M. Gaugas and D. L. Dewey, Hog kidney diamine oxidase conversion of biogenic diamines to inhibitors of cell proliferation, J. Pathol. 134: 243 (1981).PubMedCrossRefGoogle Scholar
  46. 46.
    B. Mondovi, P. Gerosa and R. Cavaliere, Studies on the effect of polyamines and their products on Ehrlich ascites tumours, Agents Actions 12: 450 (1982).PubMedCrossRefGoogle Scholar
  47. 47.
    U. Bachrach and G. Eilon, Interaction of oxidized polyamines with DNA I. Evidence for the formation of cross-links, Biochim. Biophys. Acta 145: 418 (1967).PubMedGoogle Scholar
  48. 48.
    G. Eilon and U. Bachrach, Interaction of oxidized polyamines with DNA III. Association with nucleosides, mono-and polynucleotides, Biochim. Biophys. Acta 179: 646 (1969).Google Scholar
  49. 49.
    U. Bachrach and S. Persky, Interaction of oxidized polyamines with DNA V. Inhibition of nucleic acid synthesis, Biochim. Biophys. Acta 179: 484 (1969).PubMedGoogle Scholar
  50. 50.
    U. Bachrach, S. Don and H. Wiener, Antivirus action of acrolein, glutaraldehyde and oxidized spermine, J. Gen. Virol. 13: 415 (1971).PubMedCrossRefGoogle Scholar
  51. 51.
    K. Nishimura, T. Romano and H. Yamada, Effects of oxidized spermine and acrolein on the transforming activity of T4 DNA, Biochim. Biophys. Acta 262: 24 (1972).PubMedGoogle Scholar
  52. 52.
    J. I. Hussain, C. J. Smith and J. C. Allen, Polyamine-mediated inhibition of in vitro cell proliferation is not due to acrolein, Cell Tissue Kinet. 16: 583 (1983).PubMedGoogle Scholar
  53. 53.
    W. J. Byrd, D. M. Jacobs and M. S. Amoss, Synthetic polyamines added to cultures containing bovine sera, reversibly inhibit in vitro parameters of immunity. Nature 267: 621 (1977).PubMedCrossRefGoogle Scholar
  54. 54.
    J. M. Gaugas and P. Curzen, Polyamine interaction with pregnancy serum in suppression of lymphocyte transformation. Lancet 1: 18 (1978).PubMedCrossRefGoogle Scholar
  55. 55.
    A. Boveris, N. Oshino and B. Chance, The cellular production of hydrogen peroxide, Biochem. J. 128: 617 (1972).PubMedGoogle Scholar
  56. 56.
    T. Ramasarma, Generation of H2O2 in biomembranes, Biochim. Biophys. Acta 694: 69 (1982).PubMedGoogle Scholar
  57. 57.
    D. Del Principe, A. Menichelli, W. De Matteis, M. L. Di Corpo, S. Di Giulio and A. Finazzi-Agro, Hydrogen peroxide has a role in the aggregation of human platelets, FEBS Lett. 185: 142 (1985).PubMedCrossRefGoogle Scholar
  58. 58.
    M. P. Czech, J. C. Lawrence Jr and W. S. Lynn, Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport, J. Biol. Chem. 249: 5421 (1974).PubMedGoogle Scholar
  59. 59.
    H. Smith-Johannsen, J. F. Perdue, M. Ramjeesingh and A. Kahlenberg, Involvement of membrane sulfhydryls in the activation and maintenance of nutrient transport in chick embryo fibroblasts, J. Supramol. Struct. 7: 37 (1977).PubMedCrossRefGoogle Scholar
  60. 60.
    J. C. Lawrence Jr and J. Larner, Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phosphorilation, J. Biol. Chem. 253: 2104 (1978).PubMedGoogle Scholar
  61. 61.
    B. A. Helm and M. Gunn, The effect of insulinomimetic agents on protein degradation in H35 hepatoma cells, Mol. Cell. Biochem. 71: 159 (1986).PubMedCrossRefGoogle Scholar
  62. 62.
    J. N. Livingston, P. A. Gurny and D. H. Lockwood, Insulin-like effect of polyamines in fat cells, J. Biol. Chem. 252: 560 (1977).PubMedGoogle Scholar
  63. 63.
    A. Finazzi-Agro, P. Conti, M. Hofmann, P. U. Angeletti and G. Rotilio, Activation of lymphocytes by H2O2, Agents Actions S 7: 220 (1980).Google Scholar
  64. 64.
    J. Satrustegni and C. Richter, The role of hydroperoxides as calcium release agents in rat brain mitochondria, Arch. Biochem. Biophys. 233: 736 (1984).CrossRefGoogle Scholar
  65. 65.
    D. P. Jones, H. Thor, M. T. Smith, S. A. Jervell and S. Orrenius, Inhibition of ATP-dependent microsomal Ca2 sequestration during oxidative stress and its prevention by glutathione, J. Biol. Chem. 258: 6390 (1983).PubMedGoogle Scholar
  66. 66.
    G. Bellomo, F. Mirabelli, P. Richelmi and S. Orrenius, Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver, FEBS Lett. 163: 136 (1983).PubMedCrossRefGoogle Scholar
  67. 67.
    S. Baumhutter and C. Richter, The hydroperoxide-induced release of mitochondrial calcium occurs via a distinct pathway and leaves mitochondria intact, FEBS Lett. 148: 271 (1982).CrossRefGoogle Scholar
  68. 68.
    U. Bachrach and Y. M. Heimer eds., “The Physiology of Polyamines”, CRC Press, Boca Raton FL, in press.Google Scholar
  69. 69.
    N. Seiler, Functions of polyamine acetylation, Can. J. Physiol. Pharmacol. 65: 2024 (1987).PubMedCrossRefGoogle Scholar
  70. 70.
    L. Persson, I. Holm and O. Heby, Regulation of ornithine decarboxylase mRNA translation by polyamines, J. Biol. Chem. 263: 3528 (1988).PubMedGoogle Scholar
  71. 71.
    D. H. Russell and S. H. Snyder, Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors, Proc. Natl. Acad. Sci. 60: 1420 (1968).PubMedCrossRefGoogle Scholar
  72. 72.
    J. Janne and A. Raina, Stimulation of spermidine synthesis in the regenerating rat liver: relation to increased ornithine decarboxylase activity, Acta Chem. Scand. 22: 1349 (1968).PubMedCrossRefGoogle Scholar
  73. 73.
    H. G. Williams-Ashman, G. L. Coppoc and G. Weber, Imbalance in ornithine metabolism in hepatomas of different growth rates as expressed in formation of putrescine, spermidine and spermine, Cancer Res. 32: 1924 (1972).PubMedGoogle Scholar
  74. 74.
    T. G. O’Brien, R. C. Simsiman and R. K. Boutwell, Induction of the polyamine biosynthetic enzymes in mouse epidermis and their specificity for tumor promotion, Cancer Res. 35: 2426 (1975).PubMedGoogle Scholar
  75. 75.
    G. Scalabrino, P. Pigatto, M. E. Ferioli, D. Modena, M. Puerari and A. Caru, Levels of activity of the polyamine biosynthetic decarboxylases as indicators of the degree of malignancy of human cutaneous epitheliomas, J. Invest. Dermatol. 74: 122 (1980).PubMedCrossRefGoogle Scholar
  76. 76.
    G. Scalabrino, M. E. Ferioli, D. Modena, M. Puerari and G. Luccarelli, Levels of activity of the polyamine biosynthetic decarboxylases as indicators of the degree of malignancy of human brain tumors, Ital. J. Biochem. 31: 60 (1982).Google Scholar
  77. 77.
    G. Quash, T. Keolouangkhot, L. Gazzolo, H. Ripoll and S. Saez, Diamine oxidase and polyamine oxidase activities in normal and transformed cells, Biochem. J. 177: 275 (1979).PubMedGoogle Scholar
  78. 78.
    A. Sessa, M. A. Desiderio and A. Perin, Diamine oxidase activity induction in regenerating rat liver, Biochim. Biophys. Acta 698: 11 (1982).PubMedGoogle Scholar
  79. 79.
    A. Perin, A. Sessa and M. A. Desiderio, Induction of diamine oxidase activity in some processes of growth, in: “Advances in Polyamine Research” vol. 4, U. Bachrach, A. Kaye and R. Chayen eds., Raven Press NY (1983).Google Scholar
  80. 80.
    B. Mondovi, P. Riccio, A. Riccio and G. S. Marcozzi, Amine oxidase activity in malignant human brain tumors, in: “Advances in Polyamine Research” vol. 4, U. Bachrach, A. Kaye and R. Chayen eds., Raven Press NY (1983).Google Scholar
  81. 81.
    M. A. Desiderio, A. Sessa and A. Perin, Induction of diamine oxidase activity in rat kidney during compensatory hypertrophy, Biochim. Biophys. Acta 714: 243 (1982).PubMedCrossRefGoogle Scholar
  82. 82.
    A. Perin, A. Sessa and M. A. Desiderio, Response of tissue diamine oxidase activity to polyamine administration, Biochem. J. 234: 119 (1986).PubMedGoogle Scholar
  83. 83.
    A. Perin, A. Sessa and M. A. Desiderio, Polyamine levels and diamine oxidase activity in hypertrophic heart of spontaneously hypertensive rats and of rats treated with isoproterenol, Biochim. Biophys. Acta 755: 344 (1983).PubMedCrossRefGoogle Scholar
  84. 84.
    M. A. Desiderio, A. Sessa and A. Perin, Regulation of diamine oxidase expression by beta adrenoceptors in normal and hypertrophic rat kidney, Biochim. Biophys. Acta 845: 463 (1985).PubMedCrossRefGoogle Scholar
  85. 85.
    M. A. Desiderio, A. Sessa and A. Perin, Involvement of beta2 adrenoceptors in the regulation of diamine oxidase activity in the heart of spontaneously hypertensive rats, J. Hypertension 4: S139 (1986).Google Scholar
  86. 86.
    F. Buffoni, Lysyl oxidase (characterization and clinical importance), in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  87. 87.
    D. M. Kuhn, D. L. Murphy and M. B. H. Youdim, Physiological and clinical aspects of monoamine oxidase, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  88. 88.
    W. Bardsley, Inhibitors of copper amine oxidases, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  89. 89.
    T. P. Singer, Inhibitors of FAD-containing monoamine oxidases, in: “Structure and Functions of Amine Oxidases”, B. Mondovi ed., CRC Press, Boca Raton FL (1985).Google Scholar
  90. 90.
    U. Bachrach, I. Ash, L. Abu-Elheiga, M. Hershkovitz and A. Loyter, Fusion-mediated microinjection of active amine and diamine oxidases into cultured cells: effect on protein and DNA synthesis in chick embryo fibroblasts and glioma cells, J. Cell. Physiol. 131: 92 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • B. Mondovì
    • 1
  • P. Riccio
    • 1
  • E. Agostinelli
    • 1
  1. 1.Department of Biochemical Sciences and CNR Centre for Molecular BiologyUniversity “La Sapienza”RomeItaly

Personalised recommendations