Potential Roles of Polyamine Interconversion in the Mammalian Organism

  • Nikolaus Seiler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Presumably many cell types have an enzymatic machinery suitable for the degradation of spermine to spermidine, and of spermidine to putrescine, but systematic studies of polyamine catabolism have not been carried out. In the case of vertebrates it is now firmly established that N1 -acetylation is the first step in this degradative transformation of one polyamine into the other. This reaction may be catalyzed either by the basal or the induced form of acetylCoA: spermidine/spermine N1 -acetyltransferase (cSAT), both of which are cytosolic enzymes (Persson et al., 1985). In the following step the N1-acetylpolyamines are oxidatively cleaved to form spermidine and putrescine, respectively (Seiler, 1981), an oxygen requiring reaction which is catalyzed by the flavine enzyme polyamine oxidase (PAO) (Hölttä, 1977).


Polyamine Metabolism Polyamine Oxidase Free Polyamine Polyamine Concentration Polyamine Catabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Monem, M. M., and Ohno, K., 1977, Polyamine metabolism II: N-(monoaminoalkyl) and N-(polyaminoalkyl) acetamides in human urine, J. Pharm. Sci., 66: 1195.PubMedCrossRefGoogle Scholar
  2. Antrup, H. and Seiler, N., 1980, On the turnover of polyamines spermidine and spermine in mouse brain and other organs, Neurochem. Res., 5: 123.PubMedCrossRefGoogle Scholar
  3. Bachrach, U., and Seiler, N., 1981, Formation of acetylpolyamines and putrescine from spermidine by normal and transformed chick embryo fibroblasts, Cancer Res., 41: 1205.PubMedGoogle Scholar
  4. Bardocz, S., and Weber, G., 1985, Transformation-linked increase in activities of polyamine salvage enzymes in hepatomas. Abstr. N° P2, Intern. Conf. on Polyamines in Life Sciences, Lake Yamanaka, Japan.Google Scholar
  5. Bloomfield, V. A., and Wilson, R. W., 1981, Interactions of polyamines with polynucleotides, in: “Polyamines in Biology and Medicine”, D. R. Morris and L. J. Marton, eds., p. 183, Marcel Dekker, New York.Google Scholar
  6. Bolkenius, F. N., and Seiler, N., 1986, Developmental aspects of polyamine interconversion in rat brain, Int. J. Devl. Neuroscience, 4: 217.CrossRefGoogle Scholar
  7. Bolkenius, F. N., and Seiler, N., 1987, The role of polyamine reutilisation in depletion of cellular stores of polyamines in non-proliferating tissues, Biochim. Biophys. Acta, 923: 125.PubMedCrossRefGoogle Scholar
  8. Bolkenius, F. N., Bey, P., and Seiler, N., 1985, Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role, Biochim. Biophys. Acta, 838: 69.PubMedCrossRefGoogle Scholar
  9. Chaney, J.E., Kobayashi, K., Goto, R., and Digenis, G.A., 1983, Tumor selective enhancement of radioactivity uptake in mice treated with α-difluoromethylornithine prior to administration of 14C-putrescine, Life Sci., 32: 1237.PubMedCrossRefGoogle Scholar
  10. Chun, P. W., Rennert, O. M., Saffen, E. E. and Taylor, J. W., 1976, Effect of polyamines on the electrokinetic properties of red blood cells, Biochem. Biophys. Res. Commun., 69: 1095.PubMedCrossRefGoogle Scholar
  11. Clark, R. B., and Fair, W. R., 1975, The selective in vivo incorporation and metabolism of radioactive putrescine in the adult male rat, J. Nucl. Med. 16: 337.Google Scholar
  12. Claverie, N., Wagner, J., Knödgen, B., and Seiler, N., 1987, Inhibition of polyamine oxidase improves the antitumoral effect of ornithine decarboxylase inhibitors, Anticancer Res., 7: 765.PubMedGoogle Scholar
  13. Daune, G., Gerhart, F., and Seiler, N., 1988, 5-Fluoromethylornithine, an irreversible and specific inhibitor of L-ornithine: 2-oxoacid aminotransferase. Biochem. J., in press.Google Scholar
  14. Della Ragione, R., and Pegg, A.E., 1983, Studies of the specificity and kinetics of rat liver spermidine/spermine N1-acetyltrans-ferase, Biochem J., 213: 701.PubMedGoogle Scholar
  15. Heston, W. D. W., Kadmon, D., Corey, D. F., and Fair, W. R., 1984, Differential effect of α-difluoromethylornithine on the in vivo uptake of 14C-labelled polyamines and methylglyoxal-bis-guanylhydrazone by a rat prostate derived tumor, Cancer Res., 44: 1034.PubMedGoogle Scholar
  16. Hölttä, E., 1977, Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry, 16: 91.PubMedCrossRefGoogle Scholar
  17. Ientile, R., Ruggeri, P., Russo, P., and Macaione, S., 1985, Effect of intraventricular putrescine on adenosylmethionine decarboxylase in rat hypothalamus and caudate nucleus. J. Neurochem., 44: 1315.PubMedCrossRefGoogle Scholar
  18. McCormick, F., 1978, Kinetics of polyamine synthesis and turnover in mouse fibroblasts, Biochem. J., 174: 427.PubMedGoogle Scholar
  19. Mamont, P. S., Danzin, C., Wagner, J., Siat, M., Joder-Ohlenbusch, A.-M., and Claverie, N., 1982, Accumulation of decarboxylated S-adenosyl-L-methionine in mammalian cells as a consequence of the inhibition of putrescine biosynthesis, Eur. J. Biochem. 123: 499.PubMedCrossRefGoogle Scholar
  20. Pegg, A. E., 1986, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J., 234: 249.PubMedGoogle Scholar
  21. Pegg, A. E., Hibasami, H., Matsui, I., and Bethell, D. R., 1981, Formation and interconversion of putrescine and spermidine in mammalian cells. Adv. Enzyme Regul., 19: 427.CrossRefGoogle Scholar
  22. Pegg, A. E., Sertich, G. J., Kameji, T., Erwin, B. G., and Shirahata, A., 1986a, Regulation of polyamine metabolism by polyamines. Abstr. No 30, Intern. Conf. on Polyamines in Life Sci., Lake Yamanaka, Japan.Google Scholar
  23. Pegg, A. E., Coward, J. K., Talekar, R. R., and Secrist III, J. A., 1986b, Effects of certain 5′-substituted adenosines on polyamine synthesis: selective inhibitors of spermine synthase, Biochemistry, 25: 4091.PubMedCrossRefGoogle Scholar
  24. Persson, L., Erwin, B. G., and Pegg, A. E., 1985, Spermidine/spermine N1-acetyltransferase: studies using a specific antiserum, in: “Recent Progress in Polyamine Research”, L. Selmeci, M. E. Brosnan, and N. Seiler, eds., p. 287, Akademiai Kiado, Budapest.Google Scholar
  25. Porter, C. W., and Jänne, J., 1987, Modulation of antineoplastic drug action by inhibitors of polyamine biosynthesis, in: “Inhibition of Polyamine Metabolism”, P. P. McCann, A. E. Pegg, and A. Sjoerdsma, eds., p. 203, Academic Press, Orlando.Google Scholar
  26. Porter, C. W., Cavanaugh, Jr., P. F., Stolowich, N., Ganis, B., Kelly, E., and Bergeron, R. J., 1985, Biological properties of N4-and N1, N8-spermidine derivatives in cultured L1210 leukemia cells, Cancer Res., 45: 2050.PubMedGoogle Scholar
  27. Raina, A., Pajula, R.-L., Eloranta, T., and Tuomi, K., 1978, Synthesis of polyamines and S-adenosylmethionine in rat tissues and tumor cells: Effect of D, L-α-hydrazino--aminovaleric acid on cell proliferation, Adv. Polyamine Res., 1: 75.Google Scholar
  28. Sarhan, S., Knödgen, B., Gerhart, F., and Seiler, N., 1987, Chainfluorinated polyamines as tumor markers. I. In vivo transformation of 2, 2-difluoroputrescine into 6, 6-difluorospermidine and 6, 6-difluorospermine, Int. J. Biochem., 19: 843.PubMedCrossRefGoogle Scholar
  29. Schechter, P. J., John, L., Barlow, R., and Sjoerdsma, A., 1987, Clinical aspects of inhibition of ornithine decarboxylase with emphasis on therapeutic trials of Eflornithine (DFMO) in cancer and protozoan diseases, in: “Inhibition of Polyamine Metabolism”, P. P. McCann, A. E. Pegg, and A. Sjoerdsma, eds., p. 345, Academic Press, Orlando.Google Scholar
  30. Seiler, N., 1981, Amide bond-forming reactions of polyamines, in: “Polyamines in Biology and Medicine” D. R. Morris, and L. J. Marton, eds., p. 127, Marcel Dekker, New York.Google Scholar
  31. Seiler, N., 1987a, Functions of polyamine acetylation, Can. J. Physiol. Pharmacol., 65: 2024.PubMedCrossRefGoogle Scholar
  32. Seiler, N., 1987b, Inhibition of enzymes oxidizing polyamines, in; “Inhibition of Polyamine Metabolism”, P. P. McCann, A. E. Pegg and A. Sjoerdsma, eds., p. 49, Academic Pres, OrlandoGoogle Scholar
  33. Seiler, N., and Bolkenius, F. N., 1985. Polyamine reutilization and turnover in brain, Neurochem. Res., 10: 529.PubMedCrossRefGoogle Scholar
  34. Seiler, N., and Heby, O., 1988, Regulation of cellular polyamines in mammals, Acta Biochim. Biophys. Hungarica.Google Scholar
  35. Seiler, N., Al-Therib, M.-J., Fischer, H. A., and Erdmann, G., 1979, Dynamic and regional aspects of polyamine metabolism in the brain of trout (Salmo irideus Gibb), Int. J. Biochem., 10: 961.PubMedCrossRefGoogle Scholar
  36. Seiler, N., Bolkenius, F. N., Knödgen, B. and Mamont, P., 1980, Polyamine oxidase in rat tissues, Biochim. Biophys. Acta, 615: 480.PubMedGoogle Scholar
  37. Seiler, N., Bolkenius, F. N. and Sarhan, S., 1981a, Formation of acetylpolyamines in the liver of fasting animals, Int. J. Biochem., 13: 1205.PubMedCrossRefGoogle Scholar
  38. Seiler, N., Koch-Weser, J., Knödgen, B., Richards, W., Tardif, C., Bolkenius, F. N., Schechter, P., Tell, G., Mamont, P., Fozard, J., Bachrach, U., and Grosshans, E., 1981b, The significance of acetylation in the urinary excretion of polyamines, Adv. Polyamine Res., 3: 197.Google Scholar
  39. Seiler, N., Bolkenius, F. N., Bey, P., Mamont, P. S., and Danzin, C., 1985a, Biochemical significance of inhibition of polyamine oxidase, in: “Recent Progress in Polyamine Research”, L. Selmeci, M. E. Brosnan, M. E., and N. Seiler, eds., p. 305, Akademiai Kiado, Budapest.Google Scholar
  40. Seiler, N., Bolkenius, F. N., and Knödgen, B., 1985b, The influence of catabolic reactions on polyamine excretion, Biochem. J., 225: 219.PubMedGoogle Scholar
  41. Seiler, N., Sarhan, S., Knödgen, B. and Gerhart, F., 1988, Chain-fluorinated polyamines as tumor markers. II. Metabolic aspects in normal tissues, J. Cancer Res. Clin. Oncol., 114: 71.PubMedCrossRefGoogle Scholar
  42. Shirahata, A. and Pegg, A. E., 1986, Increased content of an RNA for a precursor of S-adenosylmethionine decarboxylase in rat prostate after treatment with 2-difluoromethylornithine, J. Biol. Chem., 261: 13833.PubMedGoogle Scholar
  43. Sunkara, P. S., Baylin, S. B. and Luk, G. D., 1987, Inhibitors of polyamine biosynthesis: Cellular and in vivo effects on tumor proliferation, in: “Inhibition of Polyamine Metabolism”, P.P. McCann, A. E. Pegg, and A. Sjoerdsma, eds., p. 121, Academic Press, Orlando.Google Scholar
  44. Van den Berg, G. A., Muskiet, F. A. J., Kingma, A. W., van der Slik, W. and Halie, M. R., 1986, Simultaneous gas-chromatographic determination of free and acetyl-conjugated polyamines in urine. Clin. Chem., 32: 1930.PubMedGoogle Scholar
  45. Volkow, N., Goldman, S. S., Flamm, E. S., Cravioto, H., Wolf, A. P., and Brodie, J. D., 1983, Labelled putrescine as a probe in brain tumors, Science, 221: 673.PubMedCrossRefGoogle Scholar
  46. Wallace, H. M., 1987, Polyamine catabolism in mammalian cells: excretion and acetylation, Med. Sci. Res., 15: 1437.Google Scholar
  47. Williams-Ashman, H. G., 1985, Metabolic significance of 5′-deoxy-5′-methylthioadenosine in relation to polyamine turnover in normal and malignant mammalian cells, in: “Recent Progress in Polyamine Research”, Selmeci, L., Brosnan, M. E., and Seiler, N., eds., p. 231, Akademiai Kiado, Budapest.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Nikolaus Seiler
    • 1
  1. 1.Merrell Dow Research InstituteStrasbourg CedexFrance

Personalised recommendations