Skip to main content

Properties of Human and Rodent S-Adenosylmethionine Decarboxylase

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 250))

Abstract

S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the biosynthesis of the polyamines spermidine and spermine. Its product, decarboxylated S-adenosylmethionine (dcAdoMet) is used as an aminopropyl donor by spermidine synthase and spermine synthase (Williams-Ashman and Pegg, 1981; Pegg and McCann, 1982; Tabor and Tabor, 1984a). Once decarboxylated by the action of AdoMetDC, S-adenosylmethionine (AdoMet) becomes committed to polyamine production since methyltransferases use dcAdoMet very poorly, if at all (Pegg, 1984, 1986). In fact, the only known metabolic route for further metabolism of dcAdoMet apart for its use as an aminopropyltransferase substrate is its acetylation (Wagner et al., 1985; Pegg et al., 1986) The supply of dcAdoMet is normally regulated very tightly by the cellular polyamine content and this regulation is brought about by changes in the activity of AdoMetDC (Pegg, 1984). In this way, the cellular content of dcAdoMet is usually kept very low (about 1–3% of AdoMet content) as its synthesis is linked to the ability of the aminopropyltransferases to use it to form polyamines. Only when cellular polyamine metabolism is deranged by inhibition of the other enzymes in the polyamine biosynthetic pathway does the dcAdoMet content rise. Increases of several hundred fold occur when ornithine decarboxylase (ODC) activity is inhibited by drugs such as α-difluoromethylornithine (DFMO) and, only under these conditions, is the acetyl derivative of dcAdoMet formed in significant amounts (Pegg, 1986). The increased content of dcAdoMet is due to both an increase in the activity of AdoMetDC (Alhonen-Hongisto, 1980; Mamont et al., 1981; Pegg, 1984) and to the inability of the aminopropyltransferases to utilize the dcAdoMet formed by it because of the absence of putrescine and spermidine to serve as aminopropyl acceptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alhonen-Hongisto, L., 1980, Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture, Biochem. J., 190: 747.

    PubMed  CAS  Google Scholar 

  • Artamonova, E. Y., Zavalova, L. L., Khomutov, R. M., and Khomutov, A. R., 1986, Irreversible inhibition of S-adenosylmethionine decarboxylase by hydroxylamine-containing analogues of decarboxylated S-adenosylmethionine, Biorg. Khim., 12: 206.

    CAS  Google Scholar 

  • Dowhan, L., and Li, Q., 1988, Formation of the pyruvate residue of phosphatidylserine decarboxylase of E. coli, FASEB J., 46: Abst. 2349.

    Google Scholar 

  • Hickok, N. J., Seppänen, P. J., Kontula, K. K., Jänne, P. A., Bardin, C. W., and Jänne, O. A., 1986, Two ornithine decarboxylase mRNA species in mouse kidney arise from size heterogeneity at their 3′ termini, Proc. Natl. Acad. Sci. USA, 83: 594.

    Article  PubMed  CAS  Google Scholar 

  • Huynh, Q. K., and Snell, E., 1986, Histidine decarboxylase from Lactobacillus 30a. Hydroxylamine clevages of the-seryl-seryl-bond at the activation site of prohistidine decarboxylase, J. Biol. Chem., 261: 1521.

    PubMed  CAS  Google Scholar 

  • Kameji, T., and Pegg, A. E., 1987a, Effect of putrescine on the synthesis of S-adenosylmethionine decarboxylase, Biochem. J., 243: 285.

    PubMed  CAS  Google Scholar 

  • Kameji, T., and Pegg, A. E., 1987b, Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines, J. Biol. Chem., 262: 2427.

    PubMed  CAS  Google Scholar 

  • Kolb, M., Danzin, C., Barth, J., and Calverie, N., 1982, Synthesis and biochemical properties of chemically stable product analogues of the reaction catalyzed by S-adenosylmethionine decarboxylase, J. Med. Chem., 25: 550.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1987, At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells, J. Mol. Biol., 196: 947.

    Article  PubMed  CAS  Google Scholar 

  • Mach, M., White, M. W., Neubauer, M., Degen, J. L., and Morris, D. R., 1986, Isolation of a cDNA clone encoding S-adenosylmethionine decarboxylase. Expression of the gene in mitogen-activated lymphocytes, J. Biol. Chem., 261: 11697.

    PubMed  CAS  Google Scholar 

  • Madhubala, R., Secrist in, J. A., and Pegg, A. E., 1988, Effect of inhibitors of S-adenosylmethionine decarboxylase on the contents of ornithine decarboxylase and S-adenosylmethionine decarboxylase in L1210 cells, Biochem. J., 254: 45.

    PubMed  CAS  Google Scholar 

  • Mamont, P., Joder-Ohlenbusch, A. M., Nussli, M., and Grove, J., 1981, Indirect evidence for a strict negative control of S-adenosylmethionine decarboxylase by spermidine in rat hepatoma cells, Biochem. J., 196: 411.

    PubMed  CAS  Google Scholar 

  • Pajunen, A., Crozat, A., Jänne, G. A., Ihalainen, R., Laitinen, P. H., Stanley, B., Madhubala, R., and Pegg, A. E., 1988, Structure and regulation of S-adenosylmethionine decarboxylase, J. Biol. Chem., in press.

    Google Scholar 

  • Pegg, A. E., 1984, S-adenosylmethionine decarboxylase: a brief review, Cell Biochem. and function, 2: 11.

    Article  CAS  Google Scholar 

  • Pegg, A. E., 1986, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J., 234: 249.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., 1988, Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy, Cancer Res., 48: 759.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., and Jacobs, G., 1983, Comparison of inhibitors of S-adenosylmethionine decarboxylase from different species, Biochem. J., 213: 495.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., and McCann, P. P., 1982, Polyamine metabolism and function, Am. J. Physiol., 243: C212.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., Wechter, R., Clark, R. S., Wiest, L., and Erwin, B. G., 1986, Acetylation of decarboxylated S-adenosylmethionine by mammalian cells, Biochemistry, 25: 379.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A. E., Wechter, R., and Pajunen, A., 1987, Increase in S-adenosylmethionine decarboxylase activity in SV-3T3 cells treated with S-methyl-5′-methylthioadenosine, Biochem. J., 244: 49.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., Jones, D. B., and Secristhi, J. A., 1988a, Effect of inhibitors of S-adenosylmethionine decarboxylase on polyamine content and growth of L1210 cells, Biochemistry, 24: 1408.

    Article  Google Scholar 

  • Pegg, A. E., Wiest, L., and Pajunen, A., 1988b, Detection of proenzyme form of S-adenosylmethionine decarboxylase in extracts from rat prostate, Biochem. Biophys. Res. Commun, 150: 788.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A. E., Kameji, T., Shirahata, A., Stanley, B., Madhubala, R., and Pajunen, A., 1988c, Regulation of mammalian S-adenosylmethionine decarboxylase, Advan. Enzyme Regul., 27: 43.

    Article  CAS  Google Scholar 

  • Porter, C. W., and Bergeron, R. J., 1988, Enzyme regulation as an approach to interference with polyamine biosynthesis-an alternative to enzyme inhibition, Advan. Enzyme Regul., 27: 57.

    Article  CAS  Google Scholar 

  • Pösö, H., and Pegg, A. E., 1981, Differences between tissues in response of S-adenosylmethionine decarboxylase to administration of polyamines, Biochem. J., 200: 629.

    PubMed  Google Scholar 

  • Pösö, H., and Pegg, A. E., 1982, Comparison of S-adenosylmethionine decarboxylases from rat liver and muscle, Biochemistry, 21: 3116.

    Article  PubMed  Google Scholar 

  • Radford, D. M., Eddy, R., Haley, L., Henry, W. M., Pajunen, A., Pegg, A. E., and Shows, T. B., 1988, Gene sequences coding for S-adenosylmethionine decarboxylase are present on chromosomes 6 and X and are not amplified in colon neoplasia, Cytogenet. Cell Genet, submitted.

    Google Scholar 

  • Rechsteiner, M., 1988, Regulation of enzyme levels by proteolysis: the role of PEST regions, Advan. Enzyme Regul., 27: 135.

    Article  CAS  Google Scholar 

  • Recsei, P., and Snell, E., 1984, Pyruvoyl enzymes, Annu. Rev. Biochem., 53: 357.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S., Wells, S., and Rechsteiner, M., 1986, Amino acid sequences common to rapidly degraded protein: the PEST hypothesis, Science, 234: 364.

    Article  PubMed  CAS  Google Scholar 

  • Shirahata, A., and Pegg, A. E., 1985, Regulation of S-adenosylmethionine decarboxylase activity in rat liver and prostate, J. Biol. Chem., 260: 9583.

    PubMed  CAS  Google Scholar 

  • Shirahata, A., and Pegg, A. E., 1986, Increased content of mRNA for a precursor of S-adenosylmethionine decarboxylase in rat prostate after treatment with 2-difluoromethionine, J. Biol. Chem., 261: 13833.

    PubMed  CAS  Google Scholar 

  • Shirahata, A., Christman, K., and Pegg, A. E., 1985, Quantitation of S-adenosylmethionine decarboxylase protein, Biochemistry, 24: 4417.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, C. W., and Tabor, C. H., 1984a, Polyamines, Annu. Rev. Biochem., 53: 749.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, C. W., and Tabor, H., 1984b, Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase, Advan. Enzymol. Related Areas Mol. Biol., 56: 251–282.

    CAS  Google Scholar 

  • Tabor, C. W., and Tabor, H., 1987, The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase, J. Biol. Chem., 262: 16037.

    PubMed  CAS  Google Scholar 

  • Wagner, J., Hirth, Y., Piriou, R., Zakett, D., Claverie, N., and Danzin, C., 1985, N-Acetyl decarboxylated S-adenosylmethionine, a new metabolite of decarboxylated S-àdenosylmethionine: isolation and characterization, Biochem. Biophys. Res. Commun., 133: 546–553.

    Article  PubMed  CAS  Google Scholar 

  • White, M. W., and Morris, D. R., 1988, S-adenosylmethionine decarboxylase: genes and expression, In: “The Physiology of Polyamines, ” U. Bachrach, and Y. M. Heimer, Eds., CRC Press, Boca Raton, in press.

    Google Scholar 

  • Williams-Ashman, H. G., and Pegg, A. E., 1981, Aminopropyl group transfers, In: “Polyamines in Biology and Medicine,” D. R. Morris, and L. J. Marton, Eds., Marcel Dekker, New York, p. 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Pegg, A.E., Stanley, B., Pajunen, A., Crozat, A., Jänne, O.A. (1988). Properties of Human and Rodent S-Adenosylmethionine Decarboxylase. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics