Comparative Carcinogenesis : Is There a Theoretical Approach to Inter-Species Similarity ?

  • P. Tautu


Comparative carcinogenesis should be understood as the scientific activity dealing with rational analyses and syntheses of the essential differences and similarities between experimental and observed carcinogenesis (‘the mouse-to-man problem’) In this area, two extreme positions can be made out: (1) the ‘optimistic’ one (frequent among regulatory authorities), which accepts a direct “extrapolation” of all kinds of xenobiotic effects from strains of small laboratory animals to the human species, and (2)the ‘pessimistic’ position, which relies upon the argument that no animal data has any value for humans (“man is not a big rat”) .

The paper puts forward the essential mathematical concepts involved and shows some of the fallacies observed in biological applications. By comparing the enunciation of the empirical problem with the suggested dimensional-analytical one,it appears that a scientific solution cannot be envisaged without a deep and novel study of the process of carcinogenesis get rid of current beliefs.


Dimensional Analysis Empirical Problem Small Laboratory Animal Magical Thinking Genetic Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, B.N. (1983) Dietary carcinogens and anticarcinogens. Science, 221: 1256–1264PubMedCrossRefGoogle Scholar
  2. Ames, B.N. (1986) Carcinogens and anticarcinogens. In:Antimutagenesis and Anticarcinogenesis Mechanisms(D.M.Shankel et al.eds.), p. 7–35. Plenum Press, New YorkGoogle Scholar
  3. Ames, B.N., Magaw, R., and Gold, L.S. (1987) Ranking possible carcinogenic hazards.Science, 236: 271–280PubMedCrossRefGoogle Scholar
  4. Arley, N. (1961) Theoretical analysis of carcinogenesis. Proc.4th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 1–18. Univ.California Press, BerkeleyGoogle Scholar
  5. Arley, N., and Iversen, S.(1952) On the mechanism of experimental carcinogenesis.III.Further development of the hit theory of carcinogenesis. Acta Pathol.Microbiol.Scand., 30: 21–53PubMedCrossRefGoogle Scholar
  6. Ashby, J. (1983) The unique role of rodents in the detection of possible human carcinogens and mutagens. Mutation Res., 115: 177–213PubMedCrossRefGoogle Scholar
  7. Ashby, J. (1985) Fundamental structural alerts to potential carcinogenicity or noncarcinogenicity. Environ.Mutagen., 7: 919–921PubMedCrossRefGoogle Scholar
  8. Ashby, J. (1986) The prospects for a simplified and internationally harmonized approach to the detection of possible human carcinogens and mutagens. Mutagenesis, 1: 3–16PubMedCrossRefGoogle Scholar
  9. Ashby, J. (1988) Computer assisted short-term test battery design: Some questions. Environ.Molec.Mutagen., 11: 443–448CrossRefGoogle Scholar
  10. Ashby, J., and Purchase, I.F.H. (1985) Significance of the genotoxic activities observed in vitro for 35 of 70 NTP noncarcinogens. Environ.Mutagen., 7: 747–758PubMedCrossRefGoogle Scholar
  11. Ashby, J., and Tennant, R.W. (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemical tests in rodents by the U.S.NCI/NTP. Mutation Res., 204: 17–115PubMedCrossRefGoogle Scholar
  12. Balâz, S., Sturdík, E., Rosenberg, M., Augustín, J., and Skaâra, B.(1988) Kinetic of drug activities as influenced by their physicochemical properties:Antibacterial effects of alkylating 2-furyl ethylenes. J.Theor.Biol., 131: 115–134Google Scholar
  13. Barenblatt, G.I. (1987) Dimensional Analysis. Gordon and Breach, New YorkGoogle Scholar
  14. Barrett, J.C., Oshimura, M., Tanaka, N., and Tsutsui, T. (1987) Genetic and epigenetic mechanisms of presumed nongenotoxic carcinogens. In:Nongenotoxic Mechanisms in Carcinogenesis (B.E. Butterworth, T.J.Slaga eds.), p.311–324. Cold Spring Harbor Lab.Google Scholar
  15. Benigni, R., and Giuliani, A (1987) Carcinogenicity, mutagenicity, toxicity and chemical structure in a homogeneous data base. In:Drug Design and Toxicology(D.Hadzi, B.Jerman-Blazic eds.), p. 346–348. Elsevier, AmsterdamGoogle Scholar
  16. Boxenbaum, H. (1980), Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance extrapolation of data to bezodiazepines and phenytoin. J.Pharmacokin.Biopharm., 8: 165–176CrossRefGoogle Scholar
  17. Boxenbaum, H. (1982) Comparative pharmacokinetics of benzodiazepines in dog and man. J.Pharmacokin.Biopharm., 10: 411–426CrossRefGoogle Scholar
  18. Boxenbaum, H. (1983) Evolutionary biology, animal behavior, fourth-dimensional space, and the raison d’être of drug metabolism and pharmacokinetics. Drug.Metab.Rev., 14: 1057–1097PubMedCrossRefGoogle Scholar
  19. Boxenbaum, H. (1984), Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug.Metab.Rev., 15: 1071–1121PubMedCrossRefGoogle Scholar
  20. Boxenbaum, H., and Ronfeld, R. (1983), Interspecies pharmacokinetic scaling and the Dedrick plots. Amer.J.Physiol., 245: R768 - R774PubMedGoogle Scholar
  21. Brockman, H.E., and DeMarini, D.M. (1988) Utility of short-term tests for genetic toxicity in the aftermath of the NTP’s analysis of 73 chemicals. Environ.Molec.Mutagen., 11: 421–435CrossRefGoogle Scholar
  22. Brusick, D. (1983) Evaluation of chronic rodent bioassays and Ames assay tests as accurate models for predicting human carcinogens. In:Application of Biological Markers to Carcinogen Testing(H.A.Milman, S.Sell eds.), p. 153–163. Plenum Press, New YorkGoogle Scholar
  23. Brusick, D. (1988) Evolution of testing strategies for genetic toxicity. Mutation Res., 205: 69–78PubMedCrossRefGoogle Scholar
  24. Butler, J.P., Feldman, H.A., and Fredberg, J.J. (1987) Dimensional analysis does not determine a mass exponent for metabolic scaling. Amer.J.Physiol., 253: R195 - R199PubMedGoogle Scholar
  25. Calabrese, E.J. (1984) Suitability of animal models for predictive toxicology:Theoretical and practical considerations. Drug Metab.Rev., 15: 505–523PubMedCrossRefGoogle Scholar
  26. Carnap, R. (1966) An Introduction to the Philosophy of Science. ( M.Gardner) Basic Books, New YorkGoogle Scholar
  27. Claxton, L.D., Stead, A.G., and Walsh, D. (1988) An analysis by chemical class of Salmonella mutagenicity tests as predictors of animal carcinogenicity. Mutation Res., 205: 197–225PubMedCrossRefGoogle Scholar
  28. Clayson, D.B. (1985) Problems in interspecies extrapolation. In: Toxicological Risk Assessment(D.B.Clayton, D.Krewski, I.Munro eds.), Vol. I, p. 105–122. CRC Press, Boca RatonGoogle Scholar
  29. Clayson, D.B. (1987) The need for biological risk assessment in reaching decisions about carcinogens. Mutation Res., 185: 243–269PubMedCrossRefGoogle Scholar
  30. Crow, J.F. (1986) Population consequences of mutagenesis and antimutagenesis. In:Antimutagenesis and Anticarcinogenesis Mechanisms(D.M.Shankel et al.eds.), p. 519–530. Plenum Press, New YorkGoogle Scholar
  31. Crump, K.S., and Howe, R.B(1985) A review of methods for calculating statistical confidence limits in low dose extrapolation. In:Toxicological Risk Assessment(D.B.Clayson, D.Krewski, I. Munro eds.), Vol.I, p.187–203. CRC Press, Boca RatonGoogle Scholar
  32. Dawe, C.J. (1983) Comparative neoplasia. In:Cancer Medicine(J.F. Holland, E.Frei III eds.), p.209–256.2nd ed. Lea & Febiger, PhiladelphiaGoogle Scholar
  33. De Bono, E. (1971) Practical Thinking. J.Cape, New YorkGoogle Scholar
  34. Dedrick, R.L. (1973) Animal scale-up. J.Pharmacokin.Biopharm., l: 435–461Google Scholar
  35. Dedrick, R.L., Bischoff, K.B., and Zaharko, D.S. (1970), Interspecies correlation of plasma concentration history of methotrexate. Cancer Chemother.Rep., Part 1, 54: 95–101Google Scholar
  36. Dedrick, R.L., Forester, D.D., Cannon, J.N., Edareen, S.M., and Mellett, L.B. (1973) Pharmacokinetics of 1-ß-D-arabinofuranosylcytosine ( Ara-C)deamination in several species. Biochem.Pharmacol., 22: 2405–2417PubMedCrossRefGoogle Scholar
  37. Diaconis, P. (1981) Magical thinking in the analysis of scientific data. Ann.N.Y.Acad.Sci., 364: 236–244CrossRefGoogle Scholar
  38. Dow, J., Laquais, B., Tisne-Versailles, J., Pourrias, B., and Strolin Benedetti, M. (1982) Pharmacokinetics and pharmacodynamics of the antiarrhytmic compound MD 750819 in dogs with experimentally induced arrhytmias. J.Pharmacokin.Biopharm., 10: 283–296Google Scholar
  39. Dow, J., Laquais, B., Tisne-Versailles, J., Pourrias, B., and Strolin Benedetti, M. (1982) Pharmacokinetics and pharmacodynamics of the antiarrhytmic compound MD 750819 in dogs with experimentally induced arrhytmias. J.Pharmacokin.Biopharm., 10: 283–296Google Scholar
  40. Dunkel, V.G. (1983) Biological significance of end points. Ann. N.Y.Acad.Sci., 407: 34–41PubMedCrossRefGoogle Scholar
  41. Economos, A.C. (1982) On the origin of biological similarity. J.Theor.Biol., 94: 25–60CrossRefGoogle Scholar
  42. Efron, E. (1984) The Apocalyptics.Cancer and the Big Lie. Simon and Schuster, New YorkGoogle Scholar
  43. Ehrenberg, A.S.C. (1968) The elements of lawlike relationships. J.Roy.Statist.Soc.Ser.A, 131: 280–302CrossRefGoogle Scholar
  44. Ehrenberg, L., Moustacchi, E., Osterman-Golkar, S., and Ekman, G. (1983) Dosimetry of genotoxic agents and dose-response relationships of their effects. Mutation Res., 123: 121–182PubMedCrossRefGoogle Scholar
  45. Frierson, M.R., Klopman, G., and Rosenkranz, H.S. (1986) Structure-activity relationships(SARs)among mutagens and carcinogens: A review. Environ.Mutagen., 8: 283–327PubMedCrossRefGoogle Scholar
  46. Garattini, S. (1982) Concluding remarks:Extrapolation of toxicological data from animals to man. In:Animals in Toxicological Research(I.Bartosek, A.Guaitani, E.Pacei eds.), p. 201–208. Raven Press, New YorkGoogle Scholar
  47. Garattini, S. (1983) Notes on xenobiotic metabolism. Ann.N.Y. Acad.Sci., 407: 1–25PubMedCrossRefGoogle Scholar
  48. Garner, R.C. (1985) Assessment of carcinogen exposure in man. Carcinogenesis, 6: 1071–1078PubMedCrossRefGoogle Scholar
  49. Gillette, J.R. (1982) The problem of chemically reactive metabolites. Drug.Metab.Rev., 13: 941–960PubMedCrossRefGoogle Scholar
  50. Gillette, J.R. (1985) Biological variation:The unsolvable problem in quantitative extrapolations from laboratory animals and other surrogate systems to human populations. In:Risk Quantitation and Regulatory Policy(D.G.Hoel, R.A.Merrill, F.P. Perera eds.), p.199–209. Cold Spring Harbor Lab.Google Scholar
  51. Gillette, J., Weisburger, E.K., Kraybill, H., and Kelsey, M.(1985) Strategies for determining the mechanisms of toxicity. J.Toxicol.-Clin.Toxicol., 23: 1–78Google Scholar
  52. Grasso, P., and Crampton, P.F. (1972) The value of the mouse in the carcinogenicity testing. Food Cosmet.Toxicol., 10: 418–422PubMedGoogle Scholar
  53. Guillier, C.L. (1972) Evaluation of the internal exposure due to various administered dosages of urethane to mice. Proc.6th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 309–315. Univ. California Press, BerkeleyGoogle Scholar
  54. Hart, R.W., and Fishbein, L. (1985), Interspecies extrapolation of drug and genetic toxicity data. In:Toxicological Risk Assessment(D.B.Clayson, D.Krewski, I.Munro eds.), Vol.I, p. 3–40. CRC Press, Boca RatonGoogle Scholar
  55. Haseman, K.K. (1983) Patterns of tumor incidence in two-year cancer bioassay feeding studies in Fisher 344 rats. Fund.Appl.Toxicol. 3: 1–9CrossRefGoogle Scholar
  56. Haynes, R.H. (1986), Introduction:Molecular basis of genomic stability and change. In:Antimutagenesis and Anticarcinogenesis Mechanisms(D.M.Shankel et al.eds.), p. 245–249. Plenum Press, New YorkGoogle Scholar
  57. Heddle, J.A. (1988) Prediction of chemical carcinogenicity from in vitro genetic toxicity. Mutagenesis 3: 287–291PubMedCrossRefGoogle Scholar
  58. Hodgson, E. (1979) Comparative aspects of the distribution of cytochrome P-450 dependent mono-oxygenase systems:An overview. Drug.Metab.Rev., 10: 15–33PubMedCrossRefGoogle Scholar
  59. Iversen, S., and Arley, N. (1950) On the mechanism of experimental carcinogenesis. Acta Pathol.Microbiol.Scand., 27: 773–803CrossRefGoogle Scholar
  60. Jeffery, A.M. (1987) DNA modification by chemical carcinogens. In:Mechanisms of Cellular Transformation by Carcinogenic Agents(D.Grunberger, S.P.Goff eds.), p. 33–71. Pergamon Press, OxfordGoogle Scholar
  61. Kauffman, S.L. (1974) Kinetics of alveolar epithelial hyperplasia in lungs of mice exposed to urethane. Lab.Invest., 30: 170–175PubMedGoogle Scholar
  62. Kauffman, S.L. (1976) Autoradiographic study of type II-cell hyperplasia in lungs of mice chronically exposed to urethane. Cell Tissue Kinet., 9: 489–497PubMedGoogle Scholar
  63. Kendall, M.G. (1968) On the future of statistics–a second look. J.Roy.Statist.Soc.Ser.A, 131: 182–192CrossRefGoogle Scholar
  64. Klonecki, W. (1979) A one-branching model of urethane carcinogenesis and its qualitative consistency with empirical findings. Math.Biosci., 43: 23–39CrossRefGoogle Scholar
  65. Knudson, A.G. (1987) Genetic oncodemes and antioncogenes. In:Biochemical and Molecular Epidemiology of Cancer(C.C.Harris ed.), p. 127–134. A.R.Liss, New YorkGoogle Scholar
  66. Kuhn, T.S. (1961) The function of measurement in modern physical science. Isis, 52:161–190 (Reproduced in “The Essential Tension”, Univ.of Chicago Press, Chicago, 1977 )Google Scholar
  67. Kyburg, H.E. (1984) Theory and Measurement. Cambridge Univ.Press, CambridgeGoogle Scholar
  68. Langhaar, H.L. (1951) Dimensional Analysis and Theory of Models. Wiley, New YorkGoogle Scholar
  69. Loury, D.J., Goldsworthy, T.L., and Butterworth, B.E. (1987) The value of measuring cell replication as a predictive index of tissue-specific tumorigenic potential. In:Nongenotoxic Mechanisms in Carcinogenesis(B.E.Butterworth, T.J.Slaga eds.), p.119–136. Cold Spring Harbor Lab.Google Scholar
  70. Marcus, A.H. (1975) Power laws in compartmental analysis.I, II. Math.Biosci., 23: 337–350CrossRefGoogle Scholar
  71. Marcus, A.H. (1975) Power laws in compartmental analysis.I, II. Math.Biosci., 35: 27–45CrossRefGoogle Scholar
  72. Meredith, P.A., Kelman, A.W., Elliott, H.L., and Reid, J.L. (1983) Pharmacokinetic and pharmacodynamic modelling of trimazosin and its major metabolite. J.Pharmacol.Biopharm., 11:323–335Google Scholar
  73. Meredith, P.A., Kelman, A.W., Elliott, H.L., and Reid, J.L. (1983) Pharmacokinetic and pharmacodynamic modelling of trimazosin and its major metabolite. J.Pharmacol.Biopharm., 11:323–335Google Scholar
  74. Mordenti, J. (1986) Dosage regimen design for pharmaceutical studies conducted in animals. J.Pharm.Sci., 75: 852–857PubMedCrossRefGoogle Scholar
  75. Natarajan, A.T., and Obe, G. (1986) How do in vivo mammalian assays compare to in vitro assays in their ability to detect muta-gens ? Mutation Res., 167: 189–201PubMedCrossRefGoogle Scholar
  76. Nebert, D.W., and Gonzalez, F.J. (1987) P450 genes:structure, evolution, and regulation. Ann.Rev.Biochem., 56: 945–993PubMedCrossRefGoogle Scholar
  77. Neyman, J. (1974) A view of biometry:An interdisciplinary domain concerned with chance mechanisms operating in living organisms;illustration:urethan carcinogenesis. In:Reliability and Biometry(F.Proschan, R.J.Serfling eds.), p. 183–201. SIAM, PhiladelphiaGoogle Scholar
  78. Neyman, J. (1982) Avenue to understanding the mechanism of radiation effects:Extended serial sacrifice experimental methodology. In:Probability Models and Cancer(L.LeCam, J.Neyman eds.), p. 45–60. North-Holland, AmsterdamGoogle Scholar
  79. Neyman, J., and Scott, E.L. (1967) Statistical aspect of the problem of carcinogenesis. Proc.Sth Berkeley Symp.Math.Statist.Probab. Vol.IV, p. 745–776. Univ.of California Press, BerkeleyGoogle Scholar
  80. Niiniluoto, I. (1985) Paradigms and problem-solving in operations research. In:Logic of Discovery and Logic of Discourse(J. Hintikka, F.Vandamme eds.), p. 145–159. Plenum Press, New YorkGoogle Scholar
  81. Oser, B.L. (1981) The rat as a model for human toxicological evaluation. J. Toxicol.Environ.Health, 8: 521–534PubMedCrossRefGoogle Scholar
  82. Paalzow, L.K. (1984), Integrated pharmacokinetic-dynamic modeling of drugs acting on the CNS. Drug Metab.Rev., 15: 383–400PubMedCrossRefGoogle Scholar
  83. Parodi, S., Taningher, M., and Santi, L. (1988) Utilization of the quantitative component of positive and negative results of short-term tests. Mutation Res., 205: 283–294PubMedCrossRefGoogle Scholar
  84. Polany, M. (1958) Personal Knowledge. Routledge & Kegan, LondonGoogle Scholar
  85. Pólya, G. (1945) How to Solve It.A New Aspect of Mathematical Method. Princeton Univ.Press, PrincetonGoogle Scholar
  86. Prothero, J. (1986) Methodological aspects of scaling in biology. J.Theor.Biol., 118: 259–286PubMedCrossRefGoogle Scholar
  87. Rahmani, R., Richard, B., Fabre, G., and Cano, J.-P. (1988) Extrapolation of preclinical pharmacokinetic data to therapeutic drug use. Xenobiotica, 18 (Suppl.1): 71–88PubMedGoogle Scholar
  88. Rall, D.P. (1979) The role of laboratory animal studies in estimating carcinogenic risks for man. In:Carcinogenic Risks. Strategies for Intervention(W.Davis, C.Rosenfeld eds.), p. 179–189. Intern.Agency Res.Cancer, LyonGoogle Scholar
  89. Rodricks, J.V., and Tardiff, R.G. (1983) Biological bases for risk assessment. In:Safety Evaluation and Regulation of Chemicals (F.Homburger ed.), p. 77–84. Karger, BaselGoogle Scholar
  90. Rosen, R. (1978) Dynamical similarity and the theory of biological transformations. Bull.Math.Biol., 40: 549–570PubMedGoogle Scholar
  91. Rosen, R. (1983) Role of similarity principles in data extrapolation. Amer.J.Physiol., 244:R591–R599Google Scholar
  92. Rosenkranz, H.S., and Ennever, F.K. (1988) Quantifying genotoxicity and non-genotoxicity. Mutation Res., 205: 59–67PubMedCrossRefGoogle Scholar
  93. Ruelius, H.W. (1987) Extrapolation from animals to man:predictions, pitfalls and perspectives. Xenobiotica, 17: 255–265PubMedCrossRefGoogle Scholar
  94. Savageau, M.A. (1979) Allometric morphogenesis of complex systems: Derivation of the basic equations from first principles. Proc.Natl.Acad.Sci.USA, 76: 6023–6025PubMedCrossRefGoogle Scholar
  95. Savageau, M.A., Voit, E.O., and Irvine, D.H. (1987) Biochemical systems theory and metabolic control theory.1, 2. Math.Biosci., 86:127–145; 147–169Google Scholar
  96. Sawada, Y., Hanano, M., Sugiyama, Y., and Iga, T. (1984) Prediction of the disposition of S-lactam antibiotics in humans from pharmacokinetic parameters in animals. J.Pharmacokin.Biopharm., 12: 241–261CrossRefGoogle Scholar
  97. Schmidt-Nielsen, K. (1970) Energy metabolism, body size, and problems of scaling. Fed.Proc., 29: 1524–1532PubMedGoogle Scholar
  98. Schneiderman, M.A., Mantel, N., and Brown, C.C. (1975) From mouse to man-or how to get from the laboratory to Park Avenue and 59th Street. Ann.N.Y.Acad.Sci., 246: 237–248PubMedCrossRefGoogle Scholar
  99. Schoenfelder, C.A., and Hoel, D.G. (1979) Properties of the Neyman-Scott carcinogenesis model at low dose rates. Math.Biosci., 45: 227–246CrossRefGoogle Scholar
  100. Schulte-Hermann, R. (1974), Induction of liver growth by xenobiotic compounds and other stimuli. Crit.Rev.Toxicol., 3: 97–158CrossRefGoogle Scholar
  101. Sheiner, L.B., Stanski, D.R., Vozeh, S., Miller, R.D., and Ham, J.(1979) Simultaneous model of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin.Pharmacol.Ther., 25: 358–371Google Scholar
  102. Shelby, M.D., Zeiger, E., and Tennant, R.W. (1988) Commentary on the status of short-term tests for chemical carcinogens. Environ. Molec.Mutagen., 11: 437–441CrossRefGoogle Scholar
  103. Shimkin, M.B., Wieder, R., Marzi, D., Gubareff, N., and Suntzeff, V. (1967) Lung tumors in mice receiving different schedules of urethane. Proc.5th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 707–719. Univ.of California Press, BerkeleyGoogle Scholar
  104. Smith, R.J. (1980) Rethinking allometry. J.Theor.Biol., 87: 97–111PubMedCrossRefGoogle Scholar
  105. Smith, R.L. (1988) The role of metabolism and disposition studies in the safety assessment of pharmaceuticals. Xenobiotica, 18 (Suppl.1): 89–96PubMedGoogle Scholar
  106. Smolen, V.F., Turrie, B.D., and Weigand, W.A. (1972) Drug input optimization:Bioavailability-effected time-optimal control of multiple simultaneous, pharmacological effects and their interrelationships. J.Pharm.Sci., 61: 1941–1952PubMedCrossRefGoogle Scholar
  107. Stahl, W.R. (1963) The analysis of biological similarity. Adv. Biol.Med.Phys., 9:355–464PubMedGoogle Scholar
  108. Tautu, P. (1975) Some examples of probability models in cancer epidemiology. Bull.Intern.Statist.Inst., 46 (Book 2): 144–158Google Scholar
  109. Teichmann, B., and Schramm, T. (1979) ‘Human’ and ’animal’ carcinogens. In:Carcinogenic Risk.Strategies for Intervention(W. Davis, C.Rosenfeld eds.), p. 203–206. IARC, LyonGoogle Scholar
  110. Tennant, al. (1987) Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science, 236: 933–941PubMedCrossRefGoogle Scholar
  111. Tennant, R.W., Stasiewicz, S., and Spalding, J.W. (1986) Comparison of multiple parameters of rodent carcinogenicity and in vitro genetic toxicity. Environ.Mutagen., 8: 205–227PubMedCrossRefGoogle Scholar
  112. Upton, R.N., Mather, L.E., Runciman, W.B., Nancarrow, C., and Carapetis, R.J. (1988) The use of mass balance principles to describe regional drug distribution and elimination. J.Pharmacokin. Biopharm., 16: 13–29CrossRefGoogle Scholar
  113. Vesell, E.S. (1987) Pharmacogenetic differences between humans and laboratory animals:implications for modelling. In:Human Risk Assessment-The Role of Animal Selection and Extrapolation(M.V.Roloff et al., eds.), p. 229–237. Taylor & Francis, LondonGoogle Scholar
  114. Weinstein, H., Osman, R., Topiol, S., and Green, J.P. (1981) Quantum chemical studies on molecular determinants for drug action. Ann.N.Y.Acad.Sci., 367: 434–451PubMedCrossRefGoogle Scholar
  115. White, M.R. (1972) Studies of the mechanism of induction of pulmonary adenomas in mice. Proc.6th Berkeley Symp.Math.Statist. Probab., Vol.IV, p. 287–307. Univ.California Press, BerkeleyGoogle Scholar
  116. White, M., Grendon, A., and Jones, H.B. (1967) Effects of urethane dose and time patterns on tumor formation. Proc.5th Berkeley Symp.Math.Statist.Probab., Vol.IV, p. 721–743. Univ.California Press, BerkeleyGoogle Scholar
  117. Williams, G.M. (1987) DNA reactive and epigenetic carcinogens. In:Mechanisms of Environmental Carcinogenesis(J.C.Barrett ed.), Vol.I, p. 113–127. CRC Press, Boca RatonGoogle Scholar
  118. Wilson, R., and Crouch, E.A.C. (1987) Risk assessment and comparisons:An introduction. Science, 236: 267–270PubMedCrossRefGoogle Scholar
  119. Wise, M.E. (1974), Interpreting both short-and long-term power laws in physiological clearance curves. Math.Biosci., 20: 327–337CrossRefGoogle Scholar
  120. Wise, M.E., Osborn, S.B., Anderson, J., and Tomlinson, R.W.S. (1968) A stochastic model for turnover of radiocalcium based on the observed power laws. Math.Biosci., 2: 199–224CrossRefGoogle Scholar
  121. Yates, F.E. (1979) Comparative physiology:compared to what ? Amer.J.Physiol., 237: R1 - R2Google Scholar
  122. Yates, F.E., and Kugler, P.N. (1986) Similarity principles and intrinsic geometries:Contrasting approaches to interspecies scaling. J.Pharm.Sci., 75: 1019–1027PubMedCrossRefGoogle Scholar
  123. Ziegel, E.R., and Gorman, J.W. (1980) Kinetic modelling with multi-response data. Technometrics, 22: 139–151CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Tautu
    • 1
  1. 1.Institute of Epidemiology and Biometry Department of Mathematical ModelsGerman Cancer Research CentreHeidelbergGermany

Personalised recommendations