Advertisement

Understanding Multi-Stage Carcinogenesis at the Molecular Level: Notes on Recent Progress

  • M. Hollstein
  • H. Yamasaki

Summary

While it is convenient to separate cancer stages into initiation and promotion phases, and to classify chemicals based on whether they have initiation or promoting activity, it is difficult to find mechanistic definitions that are internally consistent. A transforming point mutation in c-ras is experimentally inducible by an initiator, yet may occur either early or late in the development of cancer. Tumor promoters are considered non-genotoxic, yet TPA does affect the genome and can cause structural alterations in DNA. A further complication is that inducible cellular pathways can modulate DNA damage qualitatively and quantitatively. Basic research on the molecular biology of gene mutation, amplification, rearrangement, and transcription control in simple organisms that lend themselves to experimental manipulation, coupled with direct analysis of human tumors for genetic and other molecular changes will be useful in refining models of the critical steps in human cancer and the mechanisms by which they come about. Recent work on characterization of oncogenes, on gene transcription regulation, and on signal transduction pathways already has advanced our understanding considerably.

Keywords

Acute Myeloid Leukemia Phorbol Ester Multistage Carcinogenesis Dihydrofolate Reductase Gene Mutagenic Carcinogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacid, M. 1987, ras genes. Ann. Rev. Biochem. 56:779.Google Scholar
  2. Barsoum, J., and Varshaysky, A., 1983, Mitogenic hormones and tumor promoters greatly increase the incidence of colony-forming cellsGoogle Scholar
  3. bearing amplified dihydrofolate reductase genes. Proc. Natl. Acad. Sci. USA 80:5330.Google Scholar
  4. Bishop, I.M., 1987, The molecular genetics of cancer, Science, 235: 305.PubMedCrossRefGoogle Scholar
  5. Bos, J.L., 1988, The ras gene family and human carcinogenesis. Mutat. Res., 195: 255.CrossRefGoogle Scholar
  6. Bos, J.L., Fearon, E.R., Hamilton, S.R., Verlaan-de Vries, M., van Boom, J.H., van der Ebm A.J., and Vogelstein, B., 1987, Prevalence of ras gene mutations in human colorectal cancers. Nature, 327: 293.PubMedCrossRefGoogle Scholar
  7. Cairns, J., 1981, The origin of human cancers. Nature, 289: 353.PubMedCrossRefGoogle Scholar
  8. Chiu, R., Imagawa, M., Imbra, R.J., Bockoven, J.R., and Karin, M., 1987, Multiple cis-and trans-acting elements mediate the transcriptional response to phorbol esters. Nature, 329: 648.PubMedCrossRefGoogle Scholar
  9. Echols, J., 1981, SOS functions, cancer and inducible evolution. Cell, 25: 1.PubMedCrossRefGoogle Scholar
  10. Farr, C.J., Saiki, R.K., Erlich, H.A., McCormick, F., and Marshall, C.J., 1988, Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc. Natl. Acad. Sci. USA, 85: 1629.Google Scholar
  11. Higuchi, R., von Beroldingen, C., Sensabaugh, G., Erlich, H., 1988, DNA typing from single hairs. Nature, 332: 543.PubMedCrossRefGoogle Scholar
  12. Hirai, H., Kobayashi, Y., Mano, H., Hagiwara, K., Maru, Y., Omine, M., Mizoguchi, H., Nishida, J., Takaku, F., 1987, A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome, Nature, 327: 430.PubMedCrossRefGoogle Scholar
  13. Hollstein, M., Smits, A.M., Galiana, C., Yamasaki, H., Bos, J.L., Mandard, A., Partensky, C., and Montesano, R., 1988, Amplification of epidermal growth factor receptor gene but no evidence of ras mutations in primary human esophageal cancers. Cancer Res. (in press).Google Scholar
  14. Hollstein, M., and Yamasaki, H., 1987, Tumor promoter-mediated modulation of cell differentiation and communication: the phorbol ester-oncogene connection, in: Tumor Cell Differentiation, J. Aarbakke, P.K. Chiang, and H. P. Koeffler, eds, The Humana Press, Clifton, New Jersey, pp. 317–339.CrossRefGoogle Scholar
  15. Housey, G.M., Johnson, M.D., Hsiao, W.L., O’Brien, C.A., Murphy, J.P., Kirschmeier „ P., and Weinstein, I.B., 1988, Overproduction of protein kinase C causes disordered growth control in rat fibroblasts. Cell, 52: 343.PubMedCrossRefGoogle Scholar
  16. Kirk, D.L., Baran, G.J., Harper, J.F., Huskey, R.J., Huson, K.S., and Zagris, N., 1987, Stage-specific hypermutability of the regA locus of volvox, a gene regulating the germ-soma dichotomy, Cell, 48: 11.PubMedCrossRefGoogle Scholar
  17. Kleinberger, T., Etkin, S., and Lavi, S., 1986, Carcinogen-mediated methotrexate resistance and dihydrofolate reductase amplification in Chinese hamster cells. Molec. Cell. Biol., 6: 1958.Google Scholar
  18. Lech, K., Anderson, K., and Brent, R., 1988, DNA-bound fos proteins activate transcription in yeast, Cell, 52: 179.PubMedCrossRefGoogle Scholar
  19. Lin, C.S., Goldthwait, D.A., and Samois, D., 1988, Identification of alu transposition in human lung carcinoma cells. Cell, 54: 153.PubMedCrossRefGoogle Scholar
  20. Lindquist, S., 1986, The heat-shock response, Ann. Rev. Biochem., 55: 1151.CrossRefGoogle Scholar
  21. Marshall, C., 1985, Human oncogenes, in: RNA Tumor Viruses, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  22. Mole, R.H., 1988, Radiation-induced acute myeloid leukaemia: an unusually valuable experimental model for testing basic assumptions about the process of carcinogenesis, in: Theories of Carcinogenesis, O.H. Iversen, ed., Hemisphere publishing Co., Washington, D.C., pp. 133–141.Google Scholar
  23. Muller, W.J., Sinn, E.,, Pattengate, P.K., Wallace, R., and Leder, P., 1988, Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell, 54: 105.PubMedCrossRefGoogle Scholar
  24. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 306: 693.Google Scholar
  25. Orr-Weaver, T.L., and Spradling, A.C., 1986, Drosophila chorion gene amplification requires an upstream region regulating s18 transcription. Molec. Cell Biol., 6: 4624.Google Scholar
  26. Pitot, H.C., 1986, Fundamentals of Oncology, Marcel Dekker, New York. Quintanilla, M., Brown, K., Ramsden, H., and Balmain, A., 1986, Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature, 322: 78.Google Scholar
  27. Ramel, C., 1988, Short-term testing - are we looking at wrong endpoints? Mutat. Res., 205: 13.Google Scholar
  28. Rossi, P., Karsenty, G., Roberts, A.B., Roche, N.S.,, Sporn, M.B., and de Crombrugghe, B., 1988, A nuclear factor 1 binding site mediates the transcriptional activation of a type 1 collagen promoter by transforming growth factor-b. Cell, 52: 405.PubMedCrossRefGoogle Scholar
  29. Saiki, R., Sharf, S., Faloona, F., Mulis, K., Horn, G., Ehrlich, H.A., and Arnheim, N., 1985, Enzymatic amplification of b-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230: 1350.PubMedCrossRefGoogle Scholar
  30. Santoro, C., Mermod, N., Andrews, P.C., and Tjian, R., 1988, A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature, 334: 218.PubMedCrossRefGoogle Scholar
  31. Stacey, D.W., and Kung, H.F., 1984, Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310: 508.Google Scholar
  32. Varshaysky, A., 1981, Phorbol ester dramatically increases incidence of methotrexate-resistant mouse cells: possible mechanisms and relevance to tumor promotion. Cell, 25: 561.CrossRefGoogle Scholar
  33. Verma, I.M., and Sassone-Corsi, P., 1987, Proto-oncogene fos: complex but versatile regulation. Cell, 51: 513.PubMedCrossRefGoogle Scholar
  34. Webster, N., Jin, J.R., Green, S., Hollis, M., and Chambon, P., 1988, The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell, 52: 169.PubMedCrossRefGoogle Scholar
  35. Yamasaki, H., Hollstein, M., Martel, N., Cabral, J.R.P., Galendo, D., and Tomatis, L., 1987, Transplacental induction of a specific mutation in fetal Ha-ras and its critical role in post-natal carcinogenesis. Int. J. Cancer, 40: 818.Google Scholar
  36. Zarbl, H., Sukumar, S., Arthur, A.V., Martin-Zanka, D., and Barbacid, M., 1985, Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature, 315: 382.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. Hollstein
    • 1
  • H. Yamasaki
    • 1
  1. 1.International Agency for Research on CancerLyon cedex 08France

Personalised recommendations