Expression of Inducible Cytochrome P-450 mRNAs During Promotion of Experimental Chemical Hepatocarcinogenesis

  • Maria Celeste Lechner


The transformation of normal into neoplastic cells produced in a given tissue under the action of a carcinogenic chemical, develops as a sequential process through successive stages which are determined by different biochemical mechanisms. This concept initially elaborated on the basis of the observation of experimental skin carcinogenesis has been confirmed to apply to all kinds of living tissues1–3.


Chemical Carcinogenesis Poly Somal mRNA Regeneration Period Post Chemical HEPATOCARCINOGENESIS Systemic Promotion Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Armuth and I. Berenblum, Systemic promotion action of phorbol in lung and liver carcinogenesis in AKR mice, Cancer Res., 32: 2259 (1972)PubMedGoogle Scholar
  2. 2.
    V. Armuth and I. Berenblum, Promotion of mammary carcinogenesis and leukemogenic action by phorbol in virgin female Wistar rats, Cancer Res., 34: 2704 (1974)PubMedGoogle Scholar
  3. 3.
    C. Peraino, R. J. M. Fry, E. Staffeldt, and J. P. Christopher, Comparative enhancing effects of phenobarbital, aminobarbital, diphenylhydantoin and dichlorodiphenyltrichloro-ethane on 2-acetyl- aminofluorene-induced hepatic tumorigenesis in the rat, Cancer Res., 35: 2884 (1975)PubMedGoogle Scholar
  4. 4.
    D. W. Nebert, F. J. Gonzalez, P450 Genes: Structure, Evolution and regulation, Ann. Rev. Biochem., 56: 945 (1987)PubMedCrossRefGoogle Scholar
  5. 5.
    M. C, Lechner, Controls of gene expression in chemical carcinogenesis: Role of cytochrome P450 mediated mono-oxygenases, in “Cell Transformation”, J. Celis and A. Graessmann ed., Plenum Press, New York, (1986)Google Scholar
  6. 6.
    D. W. Nebert, J. R. Robinson, A. Niwa, K. Kumaki, and A. P. Poland, Genetic expression of aryl hidrocarbon hydroxylase activity in the mouse, J. Cell Physiol., 83: 393 (1975)CrossRefGoogle Scholar
  7. 7.
    A. P. Poland, E. Glover, A. S Kende, Stereospecific high affinity binding of 2, 3, 7, 8, tetrachlorodibenzo-p-dioxin by hepatic cytosol: evidence that the binding species is the receptor for the induction of aryl-hidrocarbon hydroxylase, J. Biol. Chem., 251: 4936 (1976)Google Scholar
  8. 8.
    L. A. Neuhold, F. J. Gonzalez, A. K. Jaiswal. D. W. Nebert, Dioxin-Inducible Enhancer Region Upstream from the Mouse P450 Gene and Interaction with a Heterologus SV40 Promoter, DNA, 5: 403 (1986)Google Scholar
  9. 9.
    A. P. Poland, E. Glover, J. R. Robinson and D. W. Nebert, Genetic expression of aryl hidrocarbon hydroxylase activity. Induction of mono-oxygenase activities and cytochrome P1-450 formation by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in mice genetically “non-responsive” to other aromatic hydrocarbons, J. Biol. Chem., 249: 5599 (1974)PubMedGoogle Scholar
  10. 10.
    E. C. Miller, Some current perspectives on chemical carcinogenesis in humans and experimental animals, Cancer Res., 38: 1479 (1978)PubMedGoogle Scholar
  11. 11.
    D. W. Nebert, M. Adesnik, M. J. Coon, R. W. Estabrook, F. J. Gonzalez, F. P. Guengerich, I. C. Gunsalus, E. F. Johnson, B. Kemper, W. Levin, I. R. Phillips, R. Sato, and M. R. Waterman, The P450 gene superfamily: Recommended nomenclature, DNA, 1: 11 (1987)Google Scholar
  12. 12.
    D. W. Nebert, Genetic differences in susceptibility to chemical induced myelotoxicity and leukemia, Environm. Health Perspectives, 39: 11 (1980)CrossRefGoogle Scholar
  13. 13.
    D. W. Nebert and F. J. Gonzalez, Cytochrome P450 gene expression and regulation, TIPS, 6: 160 (1985)Google Scholar
  14. 14.
    C. Peraino, R. J. M. Fry, E. Staffeld and W. E. Kisieleski, Effects of varying the exposure to phenobarbital on its enhancement of 2acetylaminofluorene-induced hepatic tumorigenesis in the rat, Cancer Res. 33: 2701 (1973)PubMedGoogle Scholar
  15. 15.
    C. Peraino, R. J. M. Fry, E. Staffeldt, and J. P. Christopher, Enhancing effects of phenobarbitone and butylated hydroxytoluene on 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat, Food Cos-met. Toxicol., 15: 93 (1977)Google Scholar
  16. 16.
    C. Peraino, R. J. M. Fry and E. Staffeldt, Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2acetylaminofluorence, Cancer Res., 31: 1506 (1971)PubMedGoogle Scholar
  17. 17.
    H. C. Pitot, L. Barsness, T. Goldsworthy and T. Kitagawa, Biochemical characterisation of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine, Nature, 271: 456 (1978)PubMedCrossRefGoogle Scholar
  18. 18.
    J. P. Hardwick, F. J. Gonzalez, and C. B. Kasper, Transcriptional Regulation of rat liver epoxide hydratase, NADPH-Cytochrome P450 Oxidoreductase, and Cytochrome P450b Genes by Phenobarbital, J. Biol. Chem., 258: 8081 (1983)PubMedGoogle Scholar
  19. 19.
    A. M. Cohen, and R. W. Ruddon, The Metabolism of Ribonucleic Acid in Rat Liver after Phenobarbital Administration, M. Pharmacol., 6: 540 (1970)Google Scholar
  20. 20.
    M. C. Lechner, and C. M. Sinogas, Changes in gene expression during liver microsomal enzyme induction by phenobarbital, in “Biochem. Biophys. and Regulation of Cytochrome P450”, Gustafsson et al., ed., Elsevier/North-Holland., 405 (1980)Google Scholar
  21. 21.
    M. C. Lechner, C. Sinogas, M. L. O. Almeida, M. T. Freire, P. C. Riffaud, M. Frain, and J. M. S. Trepat, Phenobarbital-mediated modulation of gene expression in rat liver, Analysis of cDNA clones, Eur. J. Biochem., 163: 231 (1987)PubMedCrossRefGoogle Scholar
  22. 22.
    M. Frain, Structure and expression of the genes coding to two proteins, markers of the hepatic differentiation in the humans: the albumin and the alpha-fetoprotein, Ph D thesis. University of Paris V II (1984)Google Scholar
  23. 23.
    V. Daniel, S. Sarid, S. Bar-Nun, and G. Litwack, Rat Ligandin mRNA Molecular Cloning and Sequencing, Arch. of Biochem. and Bioph., 227: 266 (1983)CrossRefGoogle Scholar
  24. 24.
    M. Lechner, C. M. Sinogas, M. T. Freire, and J. Braz, Expression of liver mono-oxigenase functions induced by xenobiotics, in “Somatic Cell Genetics”, C. T. Caskey, ed., Plenum Publishing Corporation, 69 (1982)Google Scholar
  25. 25.
    A. Kumar, R. Satyanarayana Rao, and G. Padmanaban, A comparative study on the early effects of phenobarbital and 3-methycholanthrene on the synthesis and transport of ribonucleic acid in rat liver, Biochem. J., 186: 81 (1980)Google Scholar
  26. 26.
    T. J. Lindrell, R. Ellinger, J. T. Warren, D. Sundheimer and A. F. O’Malley, The effect of acute and chronic phenobarbital treatement of the activity of rat liver DNA dependent RNA polymerases, Molec. Pharm., 13: 426 (1977)Google Scholar
  27. 27.
    M. C. Lechner, M. T. Freire and B. Groner, In vitro biosyntesis of liver cytochrome P450 mature peptide sub-unit by translation of isolated poly(A) mRNA from normal and phenobarbital induced rats, Biochem. Biophys. Res. Commun., 90:531 (1979)Google Scholar
  28. 28.
    R. N. Dubois and M. R. Waterman, Effect of phenobarbital administration to rats on the level of the in vitro synthesis of cytochrome P450 directed by total rat liver RNA, Biochem. Biophys. Res. Commun., 90: 150 (1979)CrossRefGoogle Scholar
  29. 29.
    M. C. Lechner, C. Sinogas, Identification of new form of rat liver Cytochrome P450. cDNA cloning and characterizaction of the mRNA nucleotide sequence, Biological Chemistry Hoppe-Seyler, 367, Suppl., 123 (1986)Google Scholar
  30. 30.
    M. Barroso, 0. Dargouge and M. C. Lechner, Expression of a constitutive form of cytochrome P450 during rat-liver development and sexual maturation, Eur. J. Biochem, 172: 363 (1988)PubMedCrossRefGoogle Scholar
  31. 31.
    M. L. O. Almeida, C. Sinogas, M. Ludovice and M. C. Lechner, Induction of alpha-2u-globulin mRNA by phenobarbital in rat liver: Characterization of a cDNA clone, Biochem. and Bioph. Res., 134: 1182 (1986)Google Scholar
  32. 32.
    S. H. Yap, R. K. Strair, and D. A. Shafritz, Effect of a short term fast on the distribution of cytoplasmic albumin messenger ribonucleic acid in rat liver, J. Biol. Chem., 253: 4944 (1978)PubMedGoogle Scholar
  33. 33.
    J. Zahring, B. S. Baliga, and H. N. Munro, Novel mechanism for translation control in regulation of ferritin synthesis by iron, Proc. Natl. Acad. Sci., 73: 857 (1976)CrossRefGoogle Scholar
  34. 34.
    M. Adesnik, M. Atchison, Genes for cytochrome P450 and their regulation, C. R. C. Biochem., 19: 147 (1986)Google Scholar
  35. 35.
    F. J. Wibel, S. S. Park, F. Diefer, and H. V. Gelboin, Expression of cytochromes P450 in rat hepatoma cells: analysis by monoclonal antibodies specific for cytochrome P450 from rat liver induced by 3menthylcholanthrene or phenobarbital, Eur. J. Biochem., 145: 455 (1983)CrossRefGoogle Scholar
  36. 36.
    E. Farber, Cellular biochemistry of the stepwise development of cancer with chemicals. Cancer Res., 44: 5463 (1984)PubMedGoogle Scholar
  37. 37.
    A. Buchmann, M. Schwarz, R. Schmitt, C. R. Wolf, F. Oesch, and W. Kunz, Development of cytochrome P450 altered preneoplastic and neoplastic lesions during nitrosamine-induced hepatocarcinogenesis in the rat, Cancer Res., 47: 2911 (1987)PubMedGoogle Scholar
  38. 38.
    R. Schulte-Herrmann, N. Roome, I. Timmermann-Troisiener, and J. Schuppler, Immunocytochemical demonstration of a phenobarbital inducible cytochrome P450 in putatite preneoplastic foci of rat liver, Carcinogenesis, 5: 149 (1984)CrossRefGoogle Scholar
  39. 39.
    M. Schwarz, G. Peres, A. Buchmann, T. Friedberg, D. J. Waxman, and W. Kunz, Phenobarbital induction of cytochrome P450 in normal and preneoplastic rat liver: comparison of enzyme and mRNA expression as detected by immunohistochemistry and in situ hybridization, Carcinogenesis, 8: 1355 (1987)PubMedCrossRefGoogle Scholar
  40. 40.
    H. W. Kunz, A. Buchmann, M. Schwarz, R. Schmitt, W. D. Kuhlmann, C. R. Wolf, and F. Oesch, Expression and inducibility of drug metabolizing enzymes in preneoplastic and neoplastic lesions of rat liver during nitrosamine-induced hepatocarcinogenesis, Arch. Toxicol., 60: 189 (1987)Google Scholar
  41. 41.
    D. B. Solt, and E. Farber, New principle for the analysis of chemical carcinogenesis, Nature, 263: 702 (1976)CrossRefGoogle Scholar
  42. 42.
    M. Lans, J. de Gerlache, H. S. Taper, V. Preat, and M. Roberfroid, Phenobarbital as a promoter in the initiation/selection process of experimental rat hepatocarcinogenesis, Carcinogenesis, 4: 141 (1983)PubMedCrossRefGoogle Scholar
  43. 43.
    F. Decloitre, C. Lafarge-Frayssinet, M. Ouldelhkim, C. Frayssinet, M. Barroso and M. C. Lechner, Tumor promoting effect of phenobarbital in pubertal and adult male rat liver: preneoplastic stage dependent variations of enzimatic markers and expression of cytochrome P450 b+e mRNA, submitted to Carcinogenesis, (1988)Google Scholar
  44. 44.
    M. C. Lechner, M. Barroso, F. Decloitre, C. Lafarge-Frayssinet, M. Ouldelhkim, C. Frayssinet, and I. Chouroulinkov, Tumor promoting effect of phenobarbital in pubertal and adult male rat liver: Studies on gene expression of phenotype markers and phenobarbital inducible CP450 isoenzyme mRNAs, submitted to Eur. J. Biochem (1988)Google Scholar
  45. 45.
    V. L. Ribeiro, M. Barroso, and M. C. Lechner, Regulation of the expression of a P450 PCN variant mRNA in rat liver, as a function of the age and sex, 3rd Portuguese-Spanish Congress of Biochemistry, Santiago de Compostela, Spain (1988)Google Scholar
  46. 46.
    R. Schulte-Hermann, Tumor promotion in the liver, Arch Toxico1, 57: 147 (1985)CrossRefGoogle Scholar
  47. 47.
    M. A. Moore, H. J. Hacker, P. Bannasch, Phenotypic instability in focal and nodular lesions induced in a short term system in rat liver, Carcinogenesis 4: 595, 1983PubMedCrossRefGoogle Scholar
  48. 48.
    L. Fucci, C. N. Oliver, M. J. Coon, and E. R. Stadtman, Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and ageing, Proc. Natl. Acad. Sci. USA., 80: 1521 (1983)PubMedCrossRefGoogle Scholar
  49. 49.
    E. Shacter-Noiman, P. B. Chock and E. R. Stadtman, Protein phosphorylation as a regulatory device, Phil. Trans. R. Soc. Lond., B 302: 157 (1983)CrossRefGoogle Scholar
  50. 50.
    E. R. Stadtman, Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, ageing and neutrophil function, TIBS (1986)Google Scholar
  51. 51.
    C. N. Oliver, B. Ahn, M. E. Wittenberger, R. L. Levine, and E. R. Stadtman, Age-related alterations of enzymes may involve mixed-function oxidation reactions, in: “Modification of Proteins During Aging”, R. C. Adelman, E. E. Dekker, ed., Alan R. Liss, Inc., New York (1985)Google Scholar
  52. 52.
    M. C. Lechner and J. Braz, Nuclear ADP-ribosyl transferase activity correlates wicth induction of P-450 monooygenases by phenobarbital in rat liver microsomes, Eur. J. Biochem., 151: 621 (1985)PubMedCrossRefGoogle Scholar
  53. 53.
    M. C. Lechner and C. R. Pousada, A possible role liver microsomal alkaline ribonuclease in the stimulation of oxidative drug metabolism by phenobarbital, chlordane and chlorophenothane (DDT), Biochem. Pharmacol., 20: 3021 (1971)Google Scholar
  54. 54.
    H. Tsuda, R. Hasegawa, K. Imaida, T. Masui, M. A. Moore, N. Jto, Modifying potencial of 31 chemicals on the short-term development of GGTpositive foci in diethylnitrosamine - initiated rat liver, Gann 75: 876 (1984)PubMedGoogle Scholar
  55. 55.
    W. Staubli, P. Bentley, F. Bieri, E. Frohlich, F. Waechter, Inhibitory effect of nafenopin upon the development of diethylnitrosamineinduced enzyme-altered foci within the rat liver, Carcinogenesis 5: 41 (1984)PubMedCrossRefGoogle Scholar
  56. 56.
    A. B. Deangelo, C. T. Garrett, Inhibition of development of preneoplastic lesions in the livers of rats fed a weakly carcinogenic environmental contaminant, Cancer Lett. 20: 199 (1983)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Maria Celeste Lechner
    • 1
  1. 1.Laboratory of BiochemistryInstituto Gulbenkian de CienciaOeirasPortugal

Personalised recommendations