Alterations in Gene Expression in Mouse Hepatocarcinogenesis

  • Tommaso A. Dragani
  • Giacomo Manenti
  • Marina R. M. Sacchi
  • Bruno Colombo
  • Giuseppe Della Porta


Alteration in gene expression is one of several molecular changes observed in cancer. The great relevance on cell phenotype of quantitative alterations in the levels of particular mRNAs is well documented. To isolate genes under-expressed in mouse liver tumors compared to normal adult liver, we have screened a normal adult liver cDNA library with RNA probes prepared from a normal adult liver and from a hepatocellular carcinoma. Three different clones showed the common feature to be expressed at relatively high levels in normal adult liver and to be undetectable or expressed at 10–50-fold lower levels, in liver carcinomas and in 14-day-old normal liver. Therefore, these clones should represent genes regulated during liver development. Preliminary nucleotide sequence analysis of a 3′ terminal region of one clone indicated that the clone may be identical to mouse major urinary protein. The characterization of the other two clones is in progress.


Liver Tumor Differential Screening Cellular Oncogene Hepatocellular Tumor B6C3 Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



aflatoxin B1


choline-deficient diet


choline-deficient diet containing ethionine










major urinary protein






12-0-tetradecanoyl phorbol-13-acetate


platelet-derived growth factor


vinyl carbamate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alitalo K., Koskinen P., Makela T.P., Saksela K., Sistonen L., Winqvist R. (1987) myc Oncogenes: activation and amplification. Biochim. Biophys. Acta, 907: 1–32.PubMedGoogle Scholar
  2. Alitalo K., Schwab M. (1986) Oncogene amplification in tumor cells. Adv. Cancer Res., 47: 235–281.CrossRefGoogle Scholar
  3. Bannasch P. (1986) Preneoplastic lesions as end points in carcinogenicity testing. I. Hepatic preneoplasia. Carcinogenesis, 7: 689–695.PubMedCrossRefGoogle Scholar
  4. Barbacid M. (1987) ras Genes. Ann. Rev. Biochem., 56: 779–827.PubMedCrossRefGoogle Scholar
  5. Becker F.F. (1982) Morphological classification of mouse liver tumors based on biological characteristics. Cancer Res., 42: 3918–3923.PubMedGoogle Scholar
  6. Berger M.S., Locher G.W., Saurer S., Gullick W.J., Waterfield M.D., Groner B., Hynes N.E. (1988) Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res., 48: 1238–1243.PubMedGoogle Scholar
  7. Bishop M.J. (1987) The molecular genetics of cancer. Science, 235: 305–310.PubMedCrossRefGoogle Scholar
  8. Cochran B.H., Reffel A.C., Stiles C.D. (1983) Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell, 33: 939–947.PubMedCrossRefGoogle Scholar
  9. Corcos D., Defer N., Raymondjean M., Paris B., Corral M., Tichonicky L., Kruh J. (1984) Correlated increase of the expression of the c-ras genes in chemically induced hepatocarcinomas. Bioch. Biophys. Res. Comm., 122: 259–264.Google Scholar
  10. Corral M., Defer N., Paris B., Raymondjean M., Corcos D., Tichonicky L., et al. (1986) Isolation and characterization of complementary DNA clones for genes overexpressed in chemically induced rat hepatomas. Cancer Res., 46: 5119–5124.PubMedGoogle Scholar
  11. Cote G.J., Lastra B.A., Cook J.R., Huang D.-P., Chiu J.-F. (1985) Oncogene expression in rat hepatomas and during hepatocarcinogenesis. Cancer Lett., 26: 121–127.PubMedCrossRefGoogle Scholar
  12. Davis M.M. (1986) Subtractive cDNA hybridization and the T-cell receptor genes. in: “Handbook of Experimental Immunology. Vol. 2: Cellular Immunology”, D.M. Weir ed., Ch. 76. Blackwell Sci. Publ., Oxford.Google Scholar
  13. Della Porta G., Dragani T.A., Manenti G. (1987) Two-stage liver carcinogenesis in the mouse. Toxicol. Pathology, 15: 229–233.Google Scholar
  14. Dragani T.A., Manenti G., Della Porta G., Gattoni-Celli S., Weinstein I.B. (1986) Expression of retroviral sequences and oncogenes in murine hepatocellular tumors. Cancer Res., 46: 1915–1919.PubMedGoogle Scholar
  15. Dragani T.A., Manenti G., Della Porta G. (1987) Genetic susceptibility to murine hepatocarcinogenesis is associated with high growth rate of NDEA-initiated hepatocytes. J. Cancer Res. Clin. Oncol., 113: 223–229.PubMedCrossRefGoogle Scholar
  16. Endo H., Fujiyoshi T., Maehara Y., Shikata I., Nogae I. (1987) Conserved sequences abundantly expressed in tumor cells. in: “Molecular Biology and Differentiation of Cancer Cells (Oncogenes, Growth Factors, Receptors)”, K. Lapis, S. Eckhardt eds., pp. 21–26. Akademiai Kiado’, Budapest.Google Scholar
  17. Farber E. (1984) Cellular biochemistry of the stepwise development of cancer with chemicals: G.H.A. Clowes Memorial Lecture. Cancer Res., 44: 5463–5474.PubMedGoogle Scholar
  18. Friedman R.L., Manly S.P., McMahon M., Kerr I.M., Stark G.R. (1984) Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell, 38: 745–755.PubMedCrossRefGoogle Scholar
  19. Held W.A., Gallagher J.F., Hohman C.M., Kuhn N.J., Sampsell B.M., Hughes R.G. (1987) Identification and characterization of functional genes encoding the mouse major urinary proteins. Mol. Cell. Biol., 7: 3705–3712.PubMedGoogle Scholar
  20. Hsieh L.L., Hsiao W.-L., Peraino C., Maronpot R.R., Weinstein I.B. (1987) Expression of retroviral sequences and oncogenes in rat liver tumors induced by diethylnitrosamine. Cancer Res., 47: 3421–3424.PubMedGoogle Scholar
  21. Ishikawa F., Takaku F., Nagao M., Hayashi K., Takayama S., Sugimura T. (1985) Activated oncogenes on a rat hepatocellular carcinoma induced by 2-amino-3-methylimidazo 4,5-f quinoline. Gann, 76: 425–428PubMedGoogle Scholar
  22. Johnson M.D., Housey G.M., Kirschmeier P.T., Weinstein I.B. (1987) Molecular cloning of gene sequences regulated by tumor promoters and mitogens through protein kinase C. Mol. C.ll. Biology, 7: 2821–2829.Google Scholar
  23. Klein G. (1987) The approaching era of the tumor suppressor genes. Science, 238: 1539–1545.PubMedCrossRefGoogle Scholar
  24. Land H., Parada L.F., Weinberg R.A. (1983) Cellular oncogenes and multistep carcinogenesis. Science, 222: 771–778.PubMedCrossRefGoogle Scholar
  25. Lau L.F., Nathans D. (1985) Identification of a set of genes expressed during the GO/G1 transition of cultured mouse cells. EMBO J., 4: 3145–3151.PubMedGoogle Scholar
  26. Makino R., Hayashi K., Sato S., Sugimura T. (1984) Expression of the cHa-ras and c-myc genes in rat liver tumors. Bioch. Biophys. Res. Comm., 119: 1096–1102.Google Scholar
  27. McMahon G., Hanson L., Lee J.-J., Wogan G.N. (1986) Identification of an activated c-Ki-ras oncogene in rat liver tumors induced by aflatoxin B1. Proc. Natl. Acad. Sci. USA, 83: 9418–9422.PubMedCrossRefGoogle Scholar
  28. Melber K., Krieg P., Fustenberger G., Marks F. (1986) Molecular cloning of sequences activated during multi-stage carcinogenesis in mouse skin. Carcinogenesis, 7: 317–322.PubMedCrossRefGoogle Scholar
  29. Reynolds S.H., Stowers S.J., Patterson R.M., Maronpot R.R., Aaronson S.A., Anderson M.W. (1987) Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science, 237: 1309–1316.PubMedCrossRefGoogle Scholar
  30. Seeger R.C., Brodeur G.M., Sather H., Dalton A., Siegel S.E., Wong K.Y., Hammond D. (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med., 313: 1111–1116.PubMedCrossRefGoogle Scholar
  31. Shahan K., Gilmartin M., Derman E. (1987) Nucleotide sequences of liver, lachrymal, and submaxillary gland mouse major urinary protein mRNAs: mosaic structure and construction of panels of gene-specific synthetic oligonucleotide probes. Mol. Cell. Biol. 7: 1938–1946.PubMedGoogle Scholar
  32. Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuire W.L. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235: 177–182PubMedCrossRefGoogle Scholar
  33. Stowers S.J., Wiseman R.W., Ward J.M., Miller E.C., Miller J.A., Anderson M.W., Eva A. (1988) Detection of activated proto-oncogenes in N-nitrosodiethylamine-induced liver tumors: a comparison between B6C3F1 mice and Fisher 344 rats. Carcinogenesis, 9: 271–276.PubMedCrossRefGoogle Scholar
  34. Ward J.M., Goodman D.G., Squire R.A., Chu K.C., Linhart M.S. (1979) Neoplastic and nonneoplastic lesions in aging (C57BL/6NxC3H/HeN)F1 (B6C3F1) mice. J. Natl. Cancer Inst., 63: 849–854.PubMedGoogle Scholar
  35. Wiseman R.W., Stowers S.J., Miller E.C., Anderson M.W., Miller J.A. (1986) Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3 F1 mouse. Proc. Natl. Acad. Sci. USA, 83: 5825–5829.PubMedCrossRefGoogle Scholar
  36. Yamamoto M., Maehara Y., Takahashi K., Endo H. (1983) Cloning of sequences expressed specifically in tumors of rat. Proc. Natl. Acad. Sci. USA, 80: 7524–7527.PubMedCrossRefGoogle Scholar
  37. Yaswen P., Goyette M., Shank P.R., Fausto N. (1985). Expression of c-Kiras, c-Ha-ras, and c-myc in specific cell types during hepatocarcinogenesis. Mol. Cell. Biol., 5: 780–786.PubMedGoogle Scholar
  38. Ymer S., Tucker W.O.J., Sanderson C.J., Hapel A.J., Campbell H.D., Young I.G. (1985) Constitutive synthesis of interleukin-3 by the leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature, 317: 255–258.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Tommaso A. Dragani
    • 1
  • Giacomo Manenti
    • 1
  • Marina R. M. Sacchi
    • 1
  • Bruno Colombo
    • 1
  • Giuseppe Della Porta
    • 1
  1. 1.Division of Experimental Oncology AIstituto Nazionale TumoriMilanItaly

Personalised recommendations