Advertisement

Species-Specific Inhalation Pharmacokinetics of 2-Nitropropane, Methyl Ethyl Ketone, and n-Hexane

  • Winfried Kessler
  • Barbara Denk
  • Johannes G. Filser

Abstract

2-Nitropropane (2-NP), methyl ethyl ketone (MEK), and n-hexane (HEX) are used in large quantities for industrial processes. They are components of solvent mixtures and are present as thinners in commercial products like glues, paints, and laquers. Because of their high volatility persons are mainly exposed via inhalation of the vapors.

Keywords

Atmospheric Concentration Methyl Ethyl Ketone Ventilation Rate Methyl Ethyl Ketone Pulmonary Retention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Rahman, K. S., Hetland, L. B., and Couri, D., 1976, Toxicity and metabolism of methyl n-butyl ketone, Am. Ind. Hva. Assoc. J. 3:95CrossRefGoogle Scholar
  2. Altenkirch, H., Mager, J., Stoltenburg, G., and Helmbrecht, J., 1977, Toxic polyneuropathies after sniffing a glue thinner, J. Neurol. 214:137PubMedCrossRefGoogle Scholar
  3. Altenkirch, H., Stoltenburg, G., and Wagner, H. M., 1978, Experimental studies on hydrocarbon neuropathies induced by methyl ethyl ketone (MER), J. Neurol. 219:159PubMedCrossRefGoogle Scholar
  4. Altenkirch, H., Wagner, H.M., Stoltenburg, G., and Spencer, P.S., 1982Google Scholar
  5. Nervous system responses of rats to subchronic inhalation of n-hexane and n-hexane + methyl ethyl ketone mixtures, J. Neurol. Science 57:209Google Scholar
  6. Altman, P. L. and Dittmer, D. S., 1964, “Biology Data Book, vol. 3”, Federation of American Societies for Experimental Biology, WashingtonGoogle Scholar
  7. Andersen, M., E., 1981, A physiologically based toxicokinetic description of the metabolism of inhaled gases and vapors: Analysis at steady state, Toxicol. Appl. Pharmacol. 60: 509CrossRefGoogle Scholar
  8. Andrae, U., Homfeldt, H., Vogl, L., Lichtmannegger, J., and Summer, K. H., 1988, 2-Nitropropane induces DNA repair synthesis in rat hepatocytes in vitro and in vivo, Carcinoaenesis 9: 811CrossRefGoogle Scholar
  9. Anthony, D. C., Boekelheide, K., Anderson, C.W., and Graham, D. G., 1983, The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. II. Dimethyl substitution accelerates pyrrole formation and protein crosslinking, Toxicol. Appl. Pharmacol. 71:372PubMedCrossRefGoogle Scholar
  10. Baker, T. S. and Rickert, D. E., 1981, Dose-dependent uptake, distribution, and elimination of inhaled n-hexane in the Fischer-344 rat, Toxicol. Appl. Pharmacol. 61:414PubMedCrossRefGoogle Scholar
  11. Böhlen, P., Schlunegger, U. P., and Läuppi, E., 1973, Uptake and distribution of hexane in rat tissues, Toxicol. Anal. Pharmacol. 25:242Google Scholar
  12. Bolt, H, M., Filser, J. G., and Störmer, F., 1984, Inhalation pharmacokinetics based on gas uptake studies V. Comparative pharmacokinetics of ethylene and 1,3-butadiene in rats, Arch. Toxicol. 55: 213Google Scholar
  13. Boxenbaum, H., 1980, Interspecies variations in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazopines and phenytoin, J. Pharmocokinet. Biopharmac. 8:165CrossRefGoogle Scholar
  14. Brugnone, F., Perbellini, L., Grigolini, L., and Apostoli, A., 1978Google Scholar
  15. Solvent exposure in a shoe factory. I. n-Hexane and acetone concentration in alveolar and environmental air and in blood, Int. Arch. Occup. Environ. Health 40:241Google Scholar
  16. Couri, D., and Milks, M., 1982, Toxicity and metabolism of the neurotoxic hexacarbons n-hexane, 2-hexanone, and 2,5-hexanedione, Ann. Rev. Pharmacol. 22:145CrossRefGoogle Scholar
  17. Dahl, A. R., Damon, E. G., Mauderly, J. L., Rothenberg, S. J., Seiler, F. A., and McClellan, R. O 1988, Uptake of 19 hydrocarbon vapors inhaled by F344 rats, Fundament. Appl. Toxicol. 10: 269Google Scholar
  18. DeCaprio, A. P., Strominger, N. L., and Weber, P., 1983, Neurotoxicity and protein binding of 2,5-hexanedione in the hen, Toxicol. Anal. Pharmacol. 68:297Google Scholar
  19. DeCaprio, A. P., and O’Neill, E. A., 1985, Alterations in rat axonal cytoskeletal proteins induced by in vitro and in vivo 2,5-hexanedione exposure, Toxicol. Anal. Pharmacol. 78:235Google Scholar
  20. DeCaprio, A. P., Briggs, R. G., Jackoswki, S. J., Kim, J. C. S., 1988, Comparative neurotoxicity and pyrrole-forming potential of 2,5-hexanedione in the rat, Toxicol. App1. Pharmacol. 92:75CrossRefGoogle Scholar
  21. Deutsche Forschungsgemeinschaft, 1976, 2-Butanon, in: “Toxikologischarbeitsmedizinische Begründung von MAK-Werten,” D. Henschler, ed., VCH, WeinheimGoogle Scholar
  22. Deutsche Forschungsgemeinschaft, 1982, n-Hexan, in: “Toxikologischarbeitsmedizinische Begründung von MAK-Werten”, D. Henschler, ed., VCH, WeinheimGoogle Scholar
  23. Dietz, F. K., and Traiger, G. J., 1979, Potentiation of CC14 hepatotoxicity in rats by a metabolite of 2-butanone: 2,3-butanediol, Toxicol. 14: 209Google Scholar
  24. Dietz, F. K., Rodriguez-Giaxola, M., Traiger, G. J., Stella, V. J., and Himmelstein, K. J., 1981, Pharmacokinetics of 2-butanol and its metabolites in the rat, J. Pharmacokin. Biopharm. 9:553CrossRefGoogle Scholar
  25. DiVicenzo, G. D., Kaplan, C. J., and Dedinas, J., 1976, Characterization of the metabolites of methyl n-butyl ketone, methyl isobutyl ketone, and methyl ethyl ketone in guinea pig serum and their clearance, Toxicol. ADpl. Pharmacol. 36:511Google Scholar
  26. Documenta Geigy, 1973, “Wissenschaftliche Tabellen”, 7. ed., Ciba-Geigy, BaselGoogle Scholar
  27. Duckett, S., Williams, N., and Francis, S., 1974, Peripheral neuropathy associated with inhalation of methyl n-butyl ketone, Experientia 30: 1283Google Scholar
  28. Fedtke, N. and Bolt, H. M., 1987, The relevance of 4,5-dihydroxy-2hexanone in the excretion kinetics of n-hexane metabolites in rat and man, Arch. Toxicol. 61:131Google Scholar
  29. Filser, J. G. and Bolt, H. M., 1979, Pharmacokinetics of halogenated ethylenes in rats, Arch. Toxicol. 42,123Google Scholar
  30. Filser, J. G. and Bolt, H. M., 1981, Inhalation kinetics based on gas uptake studies I. Improvement of kinetic models, Arch. Toxicol. 47:279Google Scholar
  31. Filser, J. G. and Bolt, H. M., 1983, Inhalation pharmacokinetics based on gas uptake studies IV. The endogenous production of volatile compounds, Arch. Toxicol. 52:123Google Scholar
  32. Filser, J. G., and Bolt, H. M., 1984, Inhalation pharmacokinetics based on gas uptake studies VI. Comparative evaluation of ethylene oxide and butadiene monoxide as exhaled reactive metabolites of ethylene and 1,3-butadiene in rats, Arch. Toxicol. 55:219Google Scholar
  33. Filser, J. G., Heilmaier, H. E., Summer, K. H., and Greim, H., 1987a, Spektralphotometrischer Test zur Bestimmung der 2,5-Hexandionbelastung aus dem Urin von Ratten, in: “Bericht Ober die 27. Jahrestagung der Deutschen Gesellschaft für Arbeitsmedizin e.V., Band 1”, K. Norpoth, ed., Gentner Verlag, StuttgartGoogle Scholar
  34. Filser, J. G., Peter, H., Bolt, H. M., and Fedtke, N., 1987b, Pharmacokinetics of the neurotoxin n-hexane in rat and man, Arch. Toxicol. 60: 77PubMedCrossRefGoogle Scholar
  35. Frommer, U., Ullrich, V., and Orrenius, S., 1974, Influence of inducers and inhibitors on the hydroxylation pattern of n-hexane in rat liver microsomes, FEBS Letters 41: 14Google Scholar
  36. Griffin, T. B., Coulston, F., and Stein, A. A., 1980, Chronic inhalation exposure of rats to vapors of 2-nitropropane at 25 ppm, Ecotoxicol. Environ. Safety 4:267Google Scholar
  37. Guyton, A. C., 1947, Respiratory volumes of laboratory animals, Am. J. Phvsiol. 150: 70Google Scholar
  38. Hallier, E., Filser, J. G., and Bolt, H. M., 1981, Inhalation pharmacokinetics based on gas uptake studies II. Pharmacokinetics of acetone in rats, Arch. Toxicol. 47:293Google Scholar
  39. Hilderbrand, R. L., and Andersen, M. E., 1981, In vivo kinetic constants for the metabolism of inhaled hydrocarbon toxicants as determined by gas uptake methods, Toxicoloaist 1: 86Google Scholar
  40. Krasavage, W. J., O’Donoghue, J. L., DiVincenzo, G. D., and Terhaar, C. J., 1980, The relative neurotoxicity of methyl n-butyl ketone, n-hexane and their metabolites, Toxicol. Appl. Pharmacol. 52:433Google Scholar
  41. Kreiling, R., Laib, R. J., Filser, J. G., and Bolt, H. M., 1986, Species differencesin butadiene metabolism between mice and rats evaluated by inhalation pharmacokinetics, Arch. Toxicol. 58:235Google Scholar
  42. Lewis, T. R., Ulrich, C. E., and Busey, W. M., 1979, Subchronic inhalation toxicity of nitromethane and 2-nitropropane, J. Environ. Pathol. Toxicol. 2:233Google Scholar
  43. Liira, J., Riihimäki, V., and Pfäffli, P., 1988, Kinetics of methyl ethyl ketone in man: absorption, distribution and elimination in inhalation exposure, Int. Arch. Environ. Health 60:195Google Scholar
  44. Lieser, K., 1983, “Tierexperimentelle Pharmakokinetik von 1,3-Butadien”, Inauguraldissertation im Fachbereich Medizin der Universität MainzGoogle Scholar
  45. Miyasaka, M., Kumai, M., Koizumi, A., Watanabe, T., Kurasako, K., Sato, K., and Ikeda, M., 1982, Biological monitoring of occupational exposure to methyl ethyl ketone by means of urinalysis for methyl ethyl ketone itself, Int. Arch. Occup. Environ. Health 50:131Google Scholar
  46. Munies, R., and Wurster, D. E., 1965, Investigations of some factors influencing percutaneous absorption. III. Absorption of methyl ethyl ketone, J. Pharmacol. Sci. 54:1281Google Scholar
  47. Nolan, R. J., Unger, S. M., and Muller, C. J., 1982, Pharmacokinetics of inhaled [14C]-2-nitropropane in male Sprague-Dawley rats, Ecotoxicol. Environ. Safety 6:388Google Scholar
  48. Perbellini, L., DeGrandis, D., Semenzato, F., Rizzuto, N., and Simonati, A., 1978, An experimental study on the neurotoxicity of n-hexane metabolites: hexanol-1 and hexanol-2, Toxicol. Appl. Pharmacol. 46:241Google Scholar
  49. Perbellini, L., Brugnone, F., and Pavan, I., 1980, Identification of the metabolites of n-hexane, cyclohexane, and their isomers in men’s urine, Toxicol. Appl. Pharmacol. 53:220Google Scholar
  50. Perbellini, L., Brugnone, F., Mozzo, P., Cocheo, V., and Caretta, D., 1984, Methyl ethyl ketone exposure in industrial workers. Uptake and kinetics, Int. Arch. Occup. Environ. Health 54:73Google Scholar
  51. Perbellini, L., Brugnone, F., Caretta, C., and Maranelli, G., 1985, Partition coefficients of some industrial aliphatic hydrocarbons (C5–C7)in blood and human tissues, Br. J. Ind. Med. 42:162Google Scholar
  52. Perbellini, L., Mozzo, P., Brugnone, F., and Zedde, A., 1986, Physiologico-mathematical model for studying human exposure to organic solvents: kinetics of blood/tissue n-hexane concentrations and of 2,5-hexanedione in urine, Br. J. Ind. Med. 43:760Google Scholar
  53. Robertson, L. W., Regel, U., Filser, J. G., and Oesch, F., 1985, Absence of lipid peroxidation as determined by ethane exhalation in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Arch. Toxicol. 57:13Google Scholar
  54. Römmelt, H., and Dirnagl, K., 1977, Pulmonale Resorption von sechs Kohlenwasserstoffen in Abhängigkeit von der Konzentration in der Atemluft, Mùnch. med. Wschr. 119:367Google Scholar
  55. Saida, K., Mendell, J. R., and Weiss, H. S., 1976, Peripheral nerve changes induced by methyl n-butyl ketone and potentiation by methyl ethyl ketone, J. Neuropath. Exp. Neurol. 35:207Google Scholar
  56. Schaumburg, H. H., and Spencer, P. S., 1976, Degeneration in central and peripheral nervous systems produced by pure n-hexane: An experimental study, Brain, 99: 183Google Scholar
  57. Schwartz, L., 1898, Ober die Oxydation des Acetons and homologer Ketone der Fettsäurereihe, Arch. Exp. Pathol. Pharmakol. 40:168Google Scholar
  58. Siegers, P. C., Filser, J. G., and Bolt, H. M., 1978, Effect of ditiocarb on metabolism and covalent binding of carbon tetrachloride, Toxicol. Appl. Pharmacol. 46:709Google Scholar
  59. Spencer, P. S., Bischoff, M. C., and Schaumburg, H. H., 1978, On the specific molecular configuration of neurotoxic aliphatic hexacarbon compounds causing central-peripheral distal axonopathy, Toxicol. Appl. Pharmacol. 44:17Google Scholar
  60. Traiger, G. J., and Bruckner, J. V., 1976, The participation of 2butanone in 2-butanol-induced potentiation of carbon tetrachloride hepatotoxicity, J. Pharmacol. Exp. Ther. 196:493Google Scholar
  61. Veulemans, H., Van Vlem, E., Jansses, H., Masschelein, R., and Leplat, A., 1982, Experimental human exposure to n-hexane study of the respiratory uptake and of n-hexane: study of the respiratory uptake and elimination, and of n-hexane concentrations in peripheral venous blood, Ind. Arch. Occup. Environ. Health 49:251Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Winfried Kessler
    • 1
  • Barbara Denk
    • 1
  • Johannes G. Filser
    • 1
  1. 1.Institut für ToxikologieGSFNeuherbergGermany

Personalised recommendations