Advertisement

Implications of Genotypic and Microenvironmental Heterogeneity for the Cure of Solid Tumors by Neutron Capture Therapy

  • Sara Rockwell
Part of the Basic Life Sciences book series (BLSC, volume 50)

Abstract

There is increasing evidence for genotypic, phenotypic, and microenvironmental heterogeneity within solid tumors in experimental animals and in humans. This heterogeneity influences the response of the tumors to treatment with radiation, cytotoxic drugs, hyperthermia, and immunotherapy, and may also influence the efficacy of neutron capture therapy. This paper reviews the data on heterogeneity in solid tumors and considers the implications of these data for curative NCT.

Keywords

Mouse Mammary Tumor Virus Hypoxic Cell Pyridine Nucleotide Human Tumour Xenograft Perfusion Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.H. Heppner, and B.E. Miller, Tumor heterogeneity: Biological implications and therapeutic consequences, Cancer Metast. Rev. 2: 5 (1983).Google Scholar
  2. 2.
    G.H. Heppner, Tumor heterogeneity, Cancer Res. 44: 2259 (1984).PubMedGoogle Scholar
  3. 3.
    G.H. Heppner, Tumor subpopulation interactions, in: “Tumor Cell Heterogeneity”, A.H. Owens, D.S. Coffey, and S.B. Baylin, eds., Academic Press, Inc., NY (1982).Google Scholar
  4. 4.
    D.L. Dexter, E.N. Spremulli, Z. Fligiel, J.A. Barbosa, R. Vogel, A. VanVoorhees, and P. Calabresi, Heterogeneity of cancer cells from a single human colon carcinoma, Am. J. Med. 71: 949 (1981).Google Scholar
  5. 5.
    W-K.A. Yung, J.R. Shapiro, and W.R. Shapiro, Heterogeneous chemosensitivities of subpopulations of human glioma cells in culture, Cancer Res. 42: 992 (1982).PubMedGoogle Scholar
  6. 6.
    J.C. Hager, and G.H. Heppner, Heterogeneity of expression and induction of mouse mammary tumor virus antigens in mouse mammary tumors, Cancer Res. 42: 4325 (1982).PubMedGoogle Scholar
  7. 7.
    E.K. Rofstad, and T. Brustad, Differential responses to radiation and hyperthermia of cloned cell lines derived from a single human melanoma xenograft, Int. J. Radiat. Oncol. Biol. Phvs. 10: 857 (1984).Google Scholar
  8. 8.
    V. Ling, Genetic basis of drug resistance in mammalian cells, in: “Drugs and Human Resistance in Neoplasms,” N. Bruckovsky and J.H. Goldie, eds., CRC Press, Boca Raton, FL (1983).Google Scholar
  9. 9.
    J.H. Goldie, and A.J. Coldman, The genetic origin of drug resistance in neoplasms: Implications for systemic therapy, Cancer Res. 44: 3643 (1984).PubMedGoogle Scholar
  10. 10.
    G.L. Rice, C. Hoy, and R.T. Schimke, Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells, Proc. Natl. Acad. Sci. USA 83: 5978 (1986).Google Scholar
  11. 11.
    J.A. Corderre, These Proceedings.Google Scholar
  12. 12.
    Y. Mishima, These Proceedings.Google Scholar
  13. 13.
    S. Rockwell, Maintenance of tumor systems and appropriate treatment techniques for experimental tumors, in: “Rodent Tumors in Experimental Cancer Therapy,” R.F. Kallman, ed., Pergamon Press, NY (1987).Google Scholar
  14. 14.
    G.G. Steel, V.D. Courtenay, and M.J. Peckham, The response to chemotherapy of a variety of human tumour xenografts, Br. J. Cancer 47: 1 (1983).Google Scholar
  15. 15.
    E.K. Rofstad, Human tumour xenografts in radiotherapeutic research, Radiother. Oncol. 3: 35 (1985).Google Scholar
  16. 16.
    J.E. Moulder, and S. Rockwell, Tumor hypoxia: Its impact on cancer therapy, Cancer Metast. Rev. 5: 313 (1987).Google Scholar
  17. 17.
    R.A. Kennedy, Hypoxic cells as specific drug targets for chemotherapy, Anti-Cancer Drug Design 2: 181 (1987).PubMedGoogle Scholar
  18. 18.
    K.A. Kennedy, B.A. Teicher, S. Rockwell, and A.C. Sartorelli, The hypoxic tumor cell: A target for selective cancer chemotherapy, Biochem. Pharm. 29: 1 (1980).Google Scholar
  19. 19.
    R.J. Goldacre, and B. Sylven, On the access of blood-borne dyes to various tumour regions, Br. J. Cancer 16: 306 (1962).Google Scholar
  20. 20.
    D.C. Rowe-Jones, The penetration of cytotoxins into malignant tumours, Br. J. Cancer 22: 155 (1968).Google Scholar
  21. 21.
    P.E. Noker, L. Simpson-Herren, and S.D. Wagoner, Heterogeneity of response of mammary adeno carcinoma 16/C (MamAd 16/C) to Melphalan (L-Pam) (NSC 8806), Proc. Am. Assoc. Cancer Res. 26: 338 (1985).Google Scholar
  22. 22.
    D.J. Chaplin, P.L. Olive, and R.E. Durand, Intermittent blood flow in a murine tumor, Cancer Res. 47: 597 (1987).PubMedGoogle Scholar
  23. 23.
    H.S. Reinhold, B. Blachiewicz, and A. Berg-Blok, Reoxygenation of tumours in sandwich chambers, Europ. J. Cancer 15: 481 (1979).Google Scholar
  24. 24.
    W. Mueller-Klieser, P. Vaupel, R. Manz, and W.A. Grunewald, Intracapillary oxyhemoglobin saturation in malignant tumors in humans, Int. J. Radiat. Oncol. Biol. Phys. 7: 1397 (1981).Google Scholar
  25. 25.
    P. Vaupel, R. Manz, W. Mueller-Klieser, and W.A. Grunewald, Intracapillary Hb02 saturation in malignant tumors during normoxia and hyperoxia, Microvas. Res. 17: 181 (1979).Google Scholar
  26. 26.
    M. Gosalvez, R.G. Thurman, B. Chance, and H. Reinhold, Regional variation in the oxygenation of mouse mammary tumours in vivo demonstrated by fluorescence of pyridine nucleotide, Br. J. Radiol. 45: 510 (1972).Google Scholar
  27. 27.
    R.G. Fairchild, and V.P. Bond, Current status of ’°B-neutron capture therapy: Enhancement of tumor dose via beam filtration and dose rate, and the effects of these parameters on minimum boron content: A theoretical evaluation, Int. J. Radiat. Oncol. Biol. Phys. 11: 831 (1985).Google Scholar
  28. 28.
    J.J. Fischer, S. Rockwell, and D.F. Martin, Perfluorochemicals and hyperbaric oxygen in radiation therapy, Int. J. Radiat. Oncol. Biol. Phys. 12: 95 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Sara Rockwell
    • 1
  1. 1.Department of Therapeutic RadiologyYale University School of MedicineNew HavenUSA

Personalised recommendations