Advertisement

Blood-Brain-Barrier Impairment after Irradiation: Implication in Boron Neutron Capture Therapy

  • V. Grégoire
  • Andrè Keyeux
  • Andrè Wambersie
Part of the Basic Life Sciences book series (BLSC, volume 50)

Abstract

The rationale of boron neutron capture therapy (BNCT) in brain tumors rests on the assumption that the boronated compounds will not be incorporated in the normal CNS protected by the tight blood-brain barrier (BBB) but will enter the tumor at the level at which the BBB is impaired.l

Keywords

Brain Tumor Tight Junction Brain Damage Boron Neutron Capture Therapy Brain Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Sweet, Medical aspects of boron-slow neutron capture therapy, in “Workshop on Neutron Capture Therapy,” R.G. Fairchild and V. P. Bond, eds., Brookhaven National Laboratory, Upton, New York (1976).Google Scholar
  2. 2.
    S. I. Rapoport, “Blood-Brain Barrier in Physiology and Medicine,” Raven Press, New York (1986).Google Scholar
  3. 3.
    E. E. Goldman, Die aussere and innere Sekretion des gesunden and kranken Organismus im Lichte der “vitalen Farbung, ” Beitr Z Klin Chir. 64: 192 (1913).Google Scholar
  4. 4.
    M. W. Brightman, Morphology of blood-brain interfaces, Exp. Eye Res. (Suppl. 1 ) (1977).Google Scholar
  5. 5.
    M. W. Brightman and T. S. Reese, Junctions between intimately opposed cell membranes in the vertebrate brain. J. Cell Biol. 10: 648 (1969).CrossRefGoogle Scholar
  6. 6.
    D. M. Long, Capillary ultrastructure and the blood-brainbarrier in human malignant brain tumors, J. Neurosurgery. 32: 127 (1970).CrossRefGoogle Scholar
  7. 7.
    Y. Ushio, T. Hayakawa, and H. Mogami, Uptake of tritiated methotrexate by mouse brain tumors after intravenous or intrathechal administration, J. Neurosurgery. 40: 706 (1974).CrossRefGoogle Scholar
  8. 8.
    B. Bar-Sella, D. Front, R. Hardoff, E. Peyser, B. Borovich, and I. Nir, Ultrastructural basis for different pertechnetate uptake patterns by various human brain tumors, J. Neurol. Neurosurg. Psychiatry. 42: 924 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    J. A. Pitcock, An electron microscopic study of acute radiation injury of the rat brain, Lab. Invest. 11: 1 (1962).Google Scholar
  10. 10.
    H. Lundqvist, K. Rosander, M. Lomanov, V. Lukjashin, G. Shimchuk, V. Zolotov, and E. Minakova, Permeability of the blood-brain barrier in the rat after local proton irradiation, Acta Radiol. Oncol. 21: 4 (1982).Google Scholar
  11. 11.
    M. P. Remler and W. H. Marcussen, Time course of early delayed blood-brain barrier changes in individual cats after ionizing radiation, Exp. Neurol. 73: 310 (1981).Google Scholar
  12. 12.
    T. Schettler and C. N. Shealy, Experimental selective alteration of blood-brain barrier by x-irradiation, J. Neurosurg. 32: 89 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    C. H. Blomstrand, B. Johansson, and B. Rosengren, Blood-brain barrier lesions in acute hypertension in rabbits after unilateral x-ray exposure of brain, Acta Neuro-path. Berl. 31: 97 (1975).Google Scholar
  14. 14.
    T. W. Griffin, J. S. Rasey, and W. A. Bleyer, The effect of photon irradiation on blood-brain barrier permeability to methotrexate in mice, Cancer. 40: 1109 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    A. J. Storm, A. J. Van der Kogel, and K. Nooter, Effect of x-irradiation on the pharmacokinetics of metrotrexate in rats: alteration of the blood-brain barrier, Eur. J. Cancer Clin. Oncol. 21: 759 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    V. A. Levin, M. S. Edwards, and A. Byrd, Quantitative observations of the acute effects of x-irradiation on brain capillary permeability: Part I, Int. J. Radiation Oncology Biol. Phys. 5: 1627 (1979).CrossRefGoogle Scholar
  17. 17.
    J. O. Jarden, V. Dhawan, A. Poltorak, J. B. Posner, and D. A. Rottenberg, PET measurement of blood-to-brain and blood-to-tumor transport of 82-Rb: effect of whole-brain radiation therapy and dexamethasone treatment, Acta Radiol. Scand. 72: 125 (1986).Google Scholar
  18. 18.
    M. P. Remler and W. Marcussen, Late effects of alpha radiation to the CNS on the blood-brain barrier, Acta Neurol. Scand. 72: 125 (1985).Google Scholar
  19. 19.
    M. P. Remler, W. H. Marcussen, and J. Tiller-Borsich, The late effects of radiation on the blood-brain barrier, Int. J. Radiation Oncology Biol. Phys. 12: 1965 (1986).CrossRefGoogle Scholar
  20. 20.
    W. F. Caveness, Experimental observations: delayed necrosis in normal monkey brain, In “Radiation Damage to the Nervous System. A Delayed Therapeutic Hazard,” H. A. Gilbert and A. R. Kagan, eds., Raven Press, New York (1980).Google Scholar
  21. 21.
    A. Keyeux, D. Ocrymowicz-Bemelmans, and A. A. Charlier, Radiation late effect on the blood-brain barrier (BBB) permeability and the antipyrine (AP) distribution volumes in the rat brain, Int. J. Radiat. Biol. 51: 751 (1987).Google Scholar
  22. 22.
    M. S. Edwards, V. A. Levin, and A. Byrd, Quantitative observations in the subacute effects of x-irradiation on brain capillary permeability: Part II. Int. J. Radiation Oncology Biol. Phys. 5: 1633 (1979).CrossRefGoogle Scholar
  23. 23.
    H. Nakasaki, G. Brunhart, T. L. Kemper, and W. F. Caveness, Monkey brain damage from radiation in the therapeutic range, J. Neurosurg. 44: 3 (1976).CrossRefGoogle Scholar
  24. 24.
    V. A. Levin, H. T. D. Landahl, and M. A. Freeman-Dove, The application of brain capillary permeability coefficient measurements to pathological conditions and the selection of agents which cross the blood-brain barrier, J. Pharmacok. and Biopharm. 4: 499 (1976).Google Scholar
  25. 25.
    P. N: Plowman, J. Fuentos, and A. N. Harnett, Early radiation swelling remains a problem in the management of pediatric brain tumors, Br. J. Radiol. 60: 931 (1987).Google Scholar
  26. 26.
    R. G. Fairchild and V. P. Bond, New compounds for neutron capture therapy (NCT) and their significance, Strahlentherapie. 160: 764 (1984).PubMedGoogle Scholar
  27. 27.
    A. H. Soloway, F. Alam, and R. F. Barth, Future boronated molecules for neutron capture therapy, in “Workshop on Neutron Capture Therapy,” R. G. Fairchild and V. P. Bond, eds., Brookhaven National Laboratory, Upton, New York (1986).Google Scholar
  28. 28.
    J. W. Hopewell and C. M. A. Young, Changes in the micro-circulation of normal tissues after irradiation, Int. J. Radiation Oncology Biol. Phys. 4: 53 (1978)CrossRefGoogle Scholar
  29. 29.
    H. F. Moustafa and J. W. Hopewell, Late functional changes in the vasculature of the rat brain after local x-irradiation, Br. J. Radiol. 53: 21 (1980).PubMedCrossRefGoogle Scholar
  30. 30.
    H. S. Reinhold and G. H. Buisman, Repair of radiation damage to capillary endothelium, Br. J. Radiol. 48: 727 (1975).PubMedCrossRefGoogle Scholar
  31. 31.
    J. F. Llena, G. Cespedes, A. Hirano, H. M. Zimmerman, E. H. Feiring, and D. Fine, VAscular alterations in delayed radiation necrosis of the brain, Arch. Pathol. Lab. Med. 100: 531 (1976).PubMedGoogle Scholar
  32. 32.
    H. D. Thames and J. H. Hendry, “Fractionation in Radiotherapy,” Taylor and Francis, London (1987).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • V. Grégoire
    • 1
  • Andrè Keyeux
    • 1
  • Andrè Wambersie
    • 1
  1. 1.Unité de Radiobiologie et de RadioprotectionUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations