Advertisement

Boron-11 Magnetic Resonance Imaging and Spectroscopy; Tools for Investigating Pharmacokinetics for Boron Neutron Capture Therapy

  • G. W. Kabalka
  • P. Bendel
  • M. Davis
  • D. N. Slatkin
  • P. L. Micca
Part of the Basic Life Sciences book series (BLSC, volume 50)

Abstract

Boron neutron capture therapy (BNCT) is brachyradiotherapy by heavy charged particles from the l0B(n,α)7Li nuclear reaction.1,2 BNCT depends upon the delivery of boron-10 containing drugs to the targeted lesions; the non-invasive verification and quantification of the boron content is a difficult problem. Clearly, experimental and clinical investigations of BNCT drugs would be greatly improved by the development of a non-invasive method for measuring the boron distribution in vivo. For example, such a technique could be used to monitor the course of distribution of a BNCT drug in the liver, kidney, bladder, brain and other organs of a patient scheduled for BNCT of a brain tumor so as to predict the optimum time for neutron irradiation of the brain.3

Keywords

Intact Animal Boron Content Boron Neutron Capture Therapi Heavy Charged Particle Boron Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Taylor and M. Goldhaber, Detection of nuclear disintegration in a photographic emulsion. Nature 135: 341 (1935).CrossRefGoogle Scholar
  2. 2.
    G. L. Locher, Biological and therapeutic possibilities of neutrons, Am. J. Roentgenol. 36: 1 (1936).Google Scholar
  3. 3.
    W. H. Sweet, The uses of nuclear disintegration in the diagnosis and treatment of brain tumor, N. Engl. J. Med. 245: 875 (1951).Google Scholar
  4. 4.
    C. L. Partain, A. E. James, F. D. Rollo, and R. R. Price, “Nuclear Magnetic Resonance Imaging,” W. B. Saunders, New York (1983).Google Scholar
  5. 5.
    P. D. Esser and R. E. Johnston, “Technology of nuclear magnetic resonance,” The Society of Nuclear Medicine, New York (1984).Google Scholar
  6. G. R. Wellum, E. I. Tolpin, A. H. Soloway, and A. Kadzmarczyk, Synthesis of p-disulfido-bisfundecahydro-closo-dodecaborate and of a derived free radical, Inorg. Chem. 16:2120 (1977).Google Scholar
  7. 7.
    D. Slatkin, P. Micca, A. Forman, D. Gabel, L. Wielopolski, and R. Fairchild, Boron uptake in melanoma, cerebrum and blood from Na2B12H11SH and Na2B24H22S2 administered to mice, Biochem. Pharmacol. 35: 1771 (1986).Google Scholar
  8. 8.
    D. N. Slatkin, D. D. Joel, R. G. Fairchild, P. L. Micca, M. M. Nawrocky, B. H. Laster, J. A. Coderre, G. C. Finkel, C. E. Poletti, and W. H. Sweet, Distribution of sulfhydryl borane monomer and dimer in rodents and of monomer in humans: nuclear reactor irradiations of melanoma and glioma in boronated rodents, in “Neutron Capture Therapy,” R. G. Fairchild, A. D. Woodhead, and V. P. Bond, eds., Plenum Press, New York (in press).Google Scholar
  9. 9.
    H. H. Schmidek, S. L. Nields, A. L. Schiller, and J. Messer, Morphological studies of rat brain tumors induced by Nnitrosomethylurea, J. Neurosurg. 34: 335 (1971).Google Scholar
  10. 10.
    P. Benda, K. Someda, J. R. Messer, W. H. Sweet, Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J. Neurosurg. 34: 310 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • G. W. Kabalka
    • 1
    • 2
  • P. Bendel
    • 1
    • 3
  • M. Davis
    • 2
  • D. N. Slatkin
    • 4
  • P. L. Micca
    • 4
  1. 1.Department of RadiologyU. Tennessee Institute for Biomedical ImagingKnoxvilleUSA
  2. 2.Department of ChemistryU. Tennessee Institute for Biomedical ImagingKnoxvilleUSA
  3. 3.Elscint MRI DivisionHerzliaIsrael
  4. 4.Medical DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations