Advertisement

Neutron Capture Therapy for Melanoma

  • Jeffrey A. Coderre
  • John D. Glass
  • Peggy Micca
  • Ralph G. Fairchild
Part of the Basic Life Sciences book series (BLSC, volume 50)

Abstract

The dose-limiting factor in cancer radiation therapy is the tolerance level of normal tissues within the radiation field. In boron neutron capture therapy (BNCT), thermal neutrons interact with boron via the 10B(n,a)/Li reaction (Taylor, 1935) to produce short-range (~ 5–9 µm), high-linear energy transfer radiations which have a large relative biological effectiveness (RBE) (Gabel, 1984; Fukuda, 1987). In theory, selective localization of 10B within the tumor should allow most of the dose to be restricted to the tumor (Locher, 1936). The failure of the initial clinical trials of BNCT, carried out between 1953 and 1961 at Brookhaven National Laboratory and the Massachusetts General Hospital (Farr, 1954; Goodwin, 1955; Asbury, 1972) was attributed to two major factors: (i) the use of boron-containing compounds which showed no selective accumulation in tumor and (ii) the rapid attenuation in tissue of the incident thermal neutron beam. The high neutron doses employed resulted in excessive surface tissue exposure; viable tumor was found at depth following the neutron irradiations. The substantial levels of boron in blood during irradiation contributed to the damage to normal brain vasculature (tumor/blood ratio <1).

Keywords

Thermal Neutron Neutron Capture Boron Neutron Capture Therapy Brookhaven National Laboratory Neutron Fluence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asbury, A. K., Ojemann, R. G., Nielsen, S. L., and Sweet, W. H., 1972, Neuropathologic study of fourteen cases of malignant brain tumor treated by boron-LO slow neutron capture radiation, J. Neuropathol. Exp. Neurol., 31:278.Google Scholar
  2. Beckurts, K. H., and Wirtz, K., 1964, Simultaneous thermal and epithermal foil activation, in: “Neutron Physics,” Springer-Verlag, New York.Google Scholar
  3. Coderre, J. A., Glass, J. D., Fairchild, R. G., Roy, U., Cohen, S., and Fand, I., 1987, Selective targeting of boronophenylalanine to melanoma for neutron capture therapy, Cancer Research, 47: 6377.Google Scholar
  4. Fairchild, R. G., and Goodman, L. J., 1966, Development and dosimetry of an “epithermal” neutron beam for possible use in neutron capture therapy. II. Absorbed dose measurements in a phantom man, Phys. Med. Biol., 11:15.Google Scholar
  5. Farr, L. E., Sweet, W. H., Robertson, J. S., Foster, C. G., Locks-ley, H. B., Sutherland, D. L., Mendelson, M. L., and Stickley, E. E., 1954, Neutron capture therapy with boron in the treatment of glioblastoma multiforme, Am. J. Roentgenol., 71: 279.Google Scholar
  6. Fukuda, H., Kobayashi, T., Matsuzawa, T., Kanda, K., Ichihashi, M., and Mishima, Y., 1987, RBE of a thermal neutron beam and the 1°B(n,a)7Li reaction on cultured B-16 melanoma cells, Int. J. Radiat. Biol., 51:167.Google Scholar
  7. Gabel, D., Fairchild, R. G., Borner, H. G., and Larsson, B., 1984, The relative biological effectiveness in V79 Chinese hamster cells of the neutron capture reaction in boron and nitrogen, Radiat. Research, 98:307.Google Scholar
  8. Godel, J. B., 1960, Description of facilities and mechanical com-ponents, Medical Research Reactor (MRR), Brookhaven National Laboratory Report No. BNL-600, Upton, NY.Google Scholar
  9. Goodwin, J. T., Farr, L. E., Sweet, W. H., and Robertson, J. S., 1955, Pathological study of eight patients with glioblastoma multiforme treated by neutron capture therapy using boron-10, Cancer, 8: 601.Google Scholar
  10. Ichihashi, M., Nakanishi, T., and Mishima, Y., 1982, Specific killing effect of 10B1-paraboronophenylalanine in thermal neutron capture therapy of malignant melanoma: in vitro radiobiological evaluation, J. Invest. Dermatol., 78:215.Google Scholar
  11. Itsumi, H., Ichihashi, M., Funasaka, Y., Mishima, Y., Ikushima, T., Kobayashi, T., and Kanda, K., 1986, Potentially lethal damage repair of B-16 melanoma cells pretreated with lOBlparaboronophenylalanine after exposure to thermal neutron radiation, in: “Neutron Capture Therapy,” H. Hatanaka, ed., Nishimura Co., Ltd., Niigata.Google Scholar
  12. Locher, G. L., 1936, Biological effects of therapeutic possibili- ties of neutrons, Am. J. Roentg. Radium Ther., 36:1.Google Scholar
  13. Mishima, Y., 1980, Japanese Patent Request, Public Disclosure No. 122720–1980.Google Scholar
  14. Mishima, Y., Ichihashi, M., Nakanishi, T., Tsiyi, M., Ueda, M., Nakagawa, T., and Suzuki, T., 1983, Cure of malignant melanoma by single thermal neutron capture treatment using melanoma-seeking compounds, Proc. 1st Int. Symp. on Neutron Capture Therapy, Brookhaven National Laboratory Report No. 51730.Google Scholar
  15. Moustafa, H. F., and Hopewell, J. W., 1980, Late functional changes in the vasculature of the rat brain after local x-irradiation, Br. J. Radiol., 53:21.Google Scholar
  16. Robertson, J. S., Fairchild, R. G., and Atkins, H. L., 1972, Dosimetry of californium-252, Radiol., 104: 393.Google Scholar
  17. Rofstad, E. K., and Brustad, T., 1985, Tumor growth delay following single-dose irradiation of human melanoma xenografts.Google Scholar
  18. Correlations with tumor growth parameters, vascular structure, and cellular radiosensitivity, Br. J. Cancer, 51:201.Google Scholar
  19. Soloway, A. H., Wright, R. L., and Messer, J. R., 1961, Evaluation of boron compounds for use in neutron capture therapy of brain tumors. I. Animal investigations, J. Pharmacol. Exp. Ther., 134:117.Google Scholar
  20. Sweet, W. H., 1986, Medical aspects of boron slow neutron capture therapy, Brookhaven National Laboratory, Report No. 51994.Google Scholar
  21. Taylor, H. J., and Goldhaber, M., 1935, Detection of nuclear disintegration in a photographic emulsion, Nature, London, 135:341.Google Scholar
  22. Watts, K. P., Fairchild, R. G., Slatkin, D., Greenberg, D., Packer, S., Atkins, H. L., and Hannon, S. J., 1981, Melanin content of hamster tissues, human tissues and various melanomas, Cancer Research,41:467.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jeffrey A. Coderre
    • 1
  • John D. Glass
    • 1
  • Peggy Micca
    • 1
  • Ralph G. Fairchild
    • 1
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations