Advertisement

Distributions of Sulfhydryl Borane Monomer and Dimer in Rodents and Monomer in Humans: Boron Neutron Capture Therapy of Melanoma and Glioma in Boronated Rodents

  • D. N. Slatkin
  • D. D. Joel
  • R. G. Fairchild
  • P. L. Micca
  • M. M. Nawrocky
  • B. H. Laster
  • J. A. Coderre
  • G. C. Finkel
  • C. E. Poletti
  • W. H. Sweet
Part of the Basic Life Sciences book series (BLSC, volume 50)

Abstract

Boron neutron capture therapy (BNCT), a form of radiation therapy based on the 10B(n,α)7Li nuclear reaction,1,2 has been used in Japan for radiation therapy of human malignant gliomas after total or partial neurosurgical excision of visible tumor.3 Japanese data for 10B distribution in the blood and tumor of 30 patients with malignant glioma have been summarized.4 The stable isotope 10B was introduced into the tumor during a 1–2 hour intra-arterial infusion of a 10B-enriched preparation of the sulfhydryl borane monomer Na2B12H11SH to a total dose in the range 30–80 mg 10B per kg total body weight. The tumor bed was irradiated for 5–7 hours at a 100-kW nuclear reactor, 11 to 16 hours after the infusion. The average tumor 10B concentration just before irradiation was 22 μg 10B/g, while the average blood 10B concentration was 18 μg 10B/g.4 Despite low tumor:blood 10B concentration ratios just before irradiation (average ratio = 1.2:1.0), post-operative survival after BNCT was unexpectedly prolonged for some patients--indeed astonishingly so for a 66-year-old Japanese man who is neurologically and neuroradiologically stable nearly sixteen years after visibly incomplete removal of a malignant glioma.4

Keywords

Malignant Glioma Brookhaven National Laboratory Osmotic Pump Slow Infusion Left Frontal Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Goldhaber, Introductory Remarks, in: “Workshop on Neutron Capture Therapy,” R. G. Fairchild and V. P. Bond, ed., Brookhaven National Laboratory, Upton (1986).Google Scholar
  2. 2.
    D. E. Lea, “Actions of Radiations on Living Cells,” 2nd Ed., University Press, Cambridge (1956).Google Scholar
  3. 3.
    H. Hatanaka, “Neutron Capture Therapy for Tumors,” Nishimura and Co., Niigata (1986).Google Scholar
  4. 4.
    W. H. Sweet, Medical aspects of boron-slow neutron capture therapy, in: “Workshop on Neutron Capture Therapy,” R. G. Fairchild and V.P. Bond, ed., Brookhaven National Laboratory, Upton (1986).Google Scholar
  5. 5.
    D. Slatkin, P. Micca, A. Forman, D. Gabel, L. Wie],opolski, and R. Fairchild, Boron uptake in melanoma, cerebrum and blood from Na2B12H11SH and Na4B24H22S2 administered to mice, Biochem. Pharmacol. 35: 1771 (1986).Google Scholar
  6. 6.
    D. N. Slatkin, P. L. Micca, and R. G. Fairchild, Distribution of boron in brain-tumor-bearing rats after infusion of Na4B24H22S2: Implications for neutron capture therapy, Radiology 157(P):311 (1985). Abstract.Google Scholar
  7. 7.
    D. N. Slatkin, P. L. Micca, B. H. Laster, and R. G. Fairchild, Distribution of sulfhydryl boranes in mice and rats, in: “Workshop on Neutron Capture Therapy,” R. G. Fairchild and V. P. Bond, ed., Brookhaven National Laboratory, Upton (1986).Google Scholar
  8. 8.
    J. Yoshida and H. Cravioto, Nitrosourea-induced brain tumors: an in vivo and in vitro tumor model system, J. Nat. Cancer Inst. 61: 365 (1978).PubMedGoogle Scholar
  9. 9.
    N. R. Clendenon, J. H. Goodman, R. F. Barth, F. Alam, A. H. Soloway, A. E. Staubus, W. A. Gordon, R. Gahbauer, J. R. Girvin, A. J. Yates, and M. L. Moeschberger, The use of an experimental rat brain tumor for boron neutron capture therapy, in: “Neutron Capture Therapy,” H. Hatanaka, ed., Nishimura, Niigata (1986).Google Scholar
  10. 10.
    D. N. Slatkin, R. D. Stoner, K. M. Rosander, J. A. KalefEzra, and J. A. Laissue, Central nervous system radiation syndrome in mice from preferential 1°B(n,a)7Li irradiation of brain vasculature, Proc. Natl. Acad. Sci. USA 85: 4020 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    H. L. Stewart, K. C. Snell, L. J. Dunham, and S. M. Schlyen, “Transplantable and Transmissible Tumors of Animals,” Armed Forces Institute of Pathology, Washington, D.C. (1959).Google Scholar
  12. 12.
    S. B. Kahl, D. D. Joel, G. C. Finkel, P. L. Micca, M. M. Nawrocky, J. A. Coderre, and D. N. Slatkin, A carboranyl porphyrin for boron neutron capture therapy of brain tumors (this volume).Google Scholar
  13. 13.
    R. J. North, Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T-cells allows sustained production of effector T-cells, J. Exp. Med. 164: 1652 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. N. Slatkin
    • 1
  • D. D. Joel
    • 1
  • R. G. Fairchild
    • 1
  • P. L. Micca
    • 1
  • M. M. Nawrocky
    • 1
  • B. H. Laster
    • 1
  • J. A. Coderre
    • 1
  • G. C. Finkel
    • 1
  • C. E. Poletti
    • 1
    • 2
  • W. H. Sweet
    • 1
    • 2
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Department of Neurological SurgeryMassachusetts General HospitalBostonUSA

Personalised recommendations