Fluorescence Investigations on the Elongation Factor Tu System

  • David M. Jameson
  • Theodore L. Hazlett
Conference paper


The application of fluorescence spectroscopy to biophysical investigations of protein systems was pioneered by Gregorio Weber nearly four decades ago. In his early work Weber demonstrated the usefulness of intrinsic fluorescence from flavins to study proteins such as diaphorase (Weber, 1948), the applicability of fluorescence probes such as dansyl chloride which could be covalently linked to proteins (Weber, 1952), the utility of probes such as anilinonaphthalene sulfonates which interact non-covalently with proteins (Weber and Laurence, 1954) and the existence and utility of intrinsic protein fluorescence from tyrosine and tryptophan residues (Weber and Teale, 1957). During the past few decades an enormous increase in the number of protein systems studied and in the sophistication of the spectroscopic techniques utilized has occurred; these studies are philosophical and logical continuations of Weber’s initial investigations. Indeed, a significant fraction of the research in the last few decades involving fluorescence approaches to biophysical chemistry has come from Professor Weber’s laboratory.


Ternary Complex American Chemical Society Tryptophan Residue Intrinsic Fluorescence Differential Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, J. K., Laue, T. M., Miller, D. L., and Johnson, A. E., 1985, Direct Determination of the Association Constant Between Elongation Factor Tu-GTP and Aminoacyl-tRNA Using Fluorescence, Biochemistry, 24:692.PubMedCrossRefGoogle Scholar
  2. Adkins, H. J., Miller, D. L., and Johnson, A. E., 1983, Changes in Aminoacyl Transfer Ribonucleic Acid Conformation upon Association with Elongation Factor Tu — Guanosine 5′-Triphosphate. Fluorescence Studies of Ternary Complex Conformation and Topology, Biochemistry, 22:1208PubMedCrossRefGoogle Scholar
  3. Alcala, J. R., Gratton, E., and Jameson, D. M., 1985, A Multifrequency Phase Fluorometer Using the Harmonic Content of a Mode-Locked Laser, Anal. Instrum., 14:225.CrossRefGoogle Scholar
  4. Alcala, J. R., Gratton, E. and Prendergast, F. G., 1987a, Resolvability of Fluorescence Lifetime Distributions Using Phase Fluorometry, Biophysical J., 51:587.CrossRefGoogle Scholar
  5. Alcala, J. R., Gratton, E. and Prendergast, F. G., 1987b, Fluorescence Lifetime Distributions in Proteins, Biophysical J., 51:597.CrossRefGoogle Scholar
  6. An, G., Bendiak, D. S., Mamelak, L. A., and Friesen, J. D., 1981, Organization and Nucleotide Sequence of a New Ribosomal Operon in Escherichia coli Containing the Genes for Ribosomal Protein S2 and Elongation Factor Ts, Nucleic Acids Res., 9:4163.PubMedCrossRefGoogle Scholar
  7. Antonsson, B., Leberman, R., and Jacrot, B., 1986, Small-Angle Neutron Scattering Study of the Ternary Complex Formed Between Bacterial Elongation Factor Tu, Guanosine 5′-Triphosphate, and Valyl-tRNAVal, Biochemistry, 25:3655.PubMedCrossRefGoogle Scholar
  8. Arai, K., Kawakita, M., Nakamura, S., Ishikawa, I., and Kaziro, Y., 1974, Studies on the Polypeptide Elongation Factors From E. coli. VI. Characterization of Sulfhydryl Groups in EF-Tu and Ef-Ts, J. Biochem. (Tokyo), 76:523.Google Scholar
  9. Arai, K., Arai, T., Kawakita, M., and Kaziro, Y., 1975, Conformational Transitions of Polypeptide Chain Elongation Factor Tu. I. Studies with Hydrophobic Probes, J. Biochem. (Tokyo), 77:1095.Google Scholar
  10. Arai, K., Arai, T., Kawakita, M., and Kaziro, Y., 1977, Further Studies on the Properties of the Polypeptide Chain Elongation Factors Tu and Ts: Hydrogen-Tritium Exchange, Optical Rotatory Dispersion, and Intrinsic Fluorescence, J. Biochem. (Tokyo), 81:1335.Google Scholar
  11. Arai, K., Clark, B. F. C., Duffy, L., Jones, M. D., Kaziro, Y., Laursen, R. A., L’Italien, J., Miller, D. L., Nagarkatti, S., Nakamura, S., Nielsen, K. M., Petersen, T. E., Takahashi, T., and Wade, M., 1980, Primary Structure of Elongation Factor Tu from Escherichia coli, Proc. Natl. Acad. Sci. (U.S.A.), 77:1326.CrossRefGoogle Scholar
  12. Beck, B. D., 1979, Polymerization of the Bacterial Elongation Factor for Protein Synthesis, EF-Tu, Eur. J. Biochem., 97:495.PubMedCrossRefGoogle Scholar
  13. Beechem, J. R. and Brand, L., 1984, Time Resolved Fluorescence Decay in Proteins, Annu. Rev. Biochem., 54:43.CrossRefGoogle Scholar
  14. Beechem, J. R., Knutson, J. R. and Brand, L., 1986, Global Analysis of Multiple Dye Fluorescence Anisotropy Experiments on Proteins, Biochem. Soc. Trans., 14:832.PubMedGoogle Scholar
  15. Block, W. and Pingoud A., 1981, The Identification and Analysis of Nucleotides Bound to the Elongation Factor Tu from Escherichia coli, Biochemistry, 114:112.Google Scholar
  16. Crane, L. J., and Miller, D. L., 1974, Guanosine Triphosphate and Guanosine Diphosphate as Conformation-Determining Molecules. Differential Interaction of a Fluorescent Probe with the Guanosine Nucleotide Complexes of Bacterial Elongation Factor Tu, Biochemistry, 13:933.PubMedCrossRefGoogle Scholar
  17. DeBernardo, S., Weigele, M., Toome, V., Manhart, K., Leimgruber, W., Böhlen, P., Stein, S., and Udenfriend, S., 1974, Studies on the Reaction of Fluorescamine with Primary Amines, Arch. Biochem. Biophys., 163:390.CrossRefGoogle Scholar
  18. Duffy, L. K., Gerber, L., Johnson, A. E., and Miller, D. L., 1981, Identification of a Histidine Residue Near the Aminoacyl Transfer Ribonucleic Acid Binding Site of Elongation Factor Tu, Biochemistry, 20:4663.PubMedCrossRefGoogle Scholar
  19. Eccleston, J. F., Gratton, E., and Jameson, D. M., 1987, Interaction of a Fluorescent Analogue of GDP with Elongation Factor Tu: Steady-State and Time-Resolved Fluorescence Studies, Biochemistry, 26:3902.PubMedCrossRefGoogle Scholar
  20. Eftink, M. R., and Ghiron, C. A., 1981, Fluorescence Quenching Studies with Proteins, Review, Anal. Biochem., 114:199.PubMedCrossRefGoogle Scholar
  21. Ehrenberg, M., Rigler, R., and Wintermeyer, W., 1979, On the Structure and Dynamics of Yeast Phenylalanine-accepting Transfer Ribonucleic Acid in Solution, Biochemistry, 18:4588.PubMedCrossRefGoogle Scholar
  22. Gratton, E. and Barbieri, B., 1986, Multifrequency Phase Fluorometry Using Pulsed Sources: Theory and Applications, Spectroscopy, 1:28.Google Scholar
  23. Gratton, E., Jameson, D. M., and Hall, R. D., 1984a, Multifrequency Phase Fluorometry, Ann. Rev. Biophys. Bioeng., 13:105.CrossRefGoogle Scholar
  24. Gratton, E., Jameson, D. M., Rosato, N. and Weber, G., 1984b, Multifrequency Cross-Correlation Phase Fluorometer Using Synchrotron Radiation, Rev. Sci. Instrum., 55:486.CrossRefGoogle Scholar
  25. Gratton, E., Jameson, D. M., Rosato, N. and Weber, G., 1984c, Multifrequency Cross-Correlation Phase Fluorometry Using Synchrotron Radiation, Biophysical J., 45:321a.CrossRefGoogle Scholar
  26. Grosjean, H. J., deHenau, S., and Crothers, D. M., 1978, On the Physical Basis for Ambiguity in Genetic Coding Interactions, Proc. Natl. Acad. Sci. (U.S.A.), 75:610.CrossRefGoogle Scholar
  27. Faulhammer, H. G., Denninger, G., Hartl, P. J., Azhayev, A. V., Schwoerer, M., and Sprinzl, M., 1986, Spin-Labelled Analogues of GDP and GTP as Site-Specific Reporter Groups for Guanosine Nucleotide-Binding Proteins, Biochim. Biophys. Acta, 884:182.PubMedCrossRefGoogle Scholar
  28. Ferguson, B. Q., and Yang, D. C. H., 1986, Localization of Non-covalently Bound Ethidium in Free and Methionyl-tRNA Synthetase bound tRNAfMet by Singlet-Singlet Energy Transfer, Biochemistry, 25:5298.PubMedCrossRefGoogle Scholar
  29. Halliday, K., 1984, Regional Homology in GTP-Binding Proto-Oncogene Products and Elongation Factors, J. Cyclic Nucleotide Prot. Phos-phoryl. Res., 9:435.Google Scholar
  30. Jameson, D. M., and Gratton, E., 1983, Analysis of Heterogeneous Emissions by Multifrequency Phase and Modulation Fluorometry, in: “New Directions in Molecular Luminescence”, D. Eastwood, ed., American Society for Testing and Materials, Philadelphia.Google Scholar
  31. Jameson, D. M., Gratton, E., and Eccleston, J. F., 1987, Intrinsic Fluorescence of Elongation Factor Tu in its Complexes with GDP and Elongation Factor Ts, Biochemistry, 26:3894.PubMedCrossRefGoogle Scholar
  32. Jekowsky, E., Miller, D. L., and Schimmel, P. R., 1977, Isolation, Characterization and Structural Implications of a Nuclease-digested Complex of Aminoacyl Transfer RNA and Escherichia coli Elongation Factor Tu, J. Mol. Biol, 114:451.PubMedCrossRefGoogle Scholar
  33. Johnson, A. E., Adkins, H. J., Matthews, E. A., and Cantor, C. R., 1982, Distance Moved by Transfer RNA During Translocation from A site to P site on the Ribosome, J. Mol. Biol., 156:113.PubMedCrossRefGoogle Scholar
  34. Jones, C. R., Bolton, P. H., and Kearns, D. R., 1978, Ethidium Bromide Binding to Transfer RNA: Transfer RNA as a Model System for Studying Drug-RNA Interactions, Biochemistry, 17:601.PubMedCrossRefGoogle Scholar
  35. Jurnak, F., 1985, Structure of the GDP Domain of EF-Tu and Location of the Amino Acids Homologous to ras Oncogene Proteins, Science (Washington P.C.), 230:32.CrossRefGoogle Scholar
  36. Kawakita, M., Akai, K., and Kaziro, Y., 1971, Identification of the Two 3H-GTP Binding Proteins in E. coli Supernatant as Tu-Ts and Tu Factors, Biochem. Biophys. Res. Commun., 42:475.PubMedCrossRefGoogle Scholar
  37. Lakowicz, J. R., Cherek, H., Maliwal, B. P., and Gratton, E., 1985, Time-Resolved Fluorescence Anisotropies of Diphenylhexatriene and Perylene in Solvents and Lipid Bilayers Obtained from Multifrequency Phase-Modulation Fluorometry, Biochemistry, 24:376.PubMedCrossRefGoogle Scholar
  38. Lochrie, M. A., Hurley, J. B., and Simon, M. I., 1985, Sequence of the Alpha Subunit of Photoreceptor G Protein: Homologies Between Transducin, ras, and Elongation Factors, Science (Washington, P.C.), 228:96.CrossRefGoogle Scholar
  39. Longworth, J. W., 1983, Intrinsic Fluorescence of Proteins, in: “Time-Resolved, Fluorescence Spectroscopy in Biochemistry and Biology,” R. B. Cundall and R. E. Dale, eds., Plenum Press, New York.Google Scholar
  40. Mahoney, C. W., and Yount, R. G., 1984, Purification of Micromolar Quantities of Nucleotide Analogs by Reverse-Phase High-Performance Liquid Chromatography Using a Volatile Buffer at Neutral pH, Anal. Biochem., 138:246.PubMedCrossRefGoogle Scholar
  41. Miller, D. L., and Weissbach, H., 1977, Factors Involved in the Transfer of Aminoacyl-tRNA to the Ribosome, in: “Molecular Mechanisms of Protein Biosynthesis, H. Weissbach and S. Pestka, eds., Academic Press, New York.Google Scholar
  42. Morikawa, K., LaCour, T. F. M., Nyborg, J., Rasmussen, K. M., Miller, D. L. and Clark, B. F. C., 1978, High Resolution X-ray Crystallographic Analysis of a Modified Form of the Elongation Factor Tu: Guanosine Diphosphate Complex, J. Mol. Biol., 125:325.PubMedCrossRefGoogle Scholar
  43. Osterberg, R., Sojoberg, B., Ligaarden, R., and Elias, P., 1981, A Small-Angle X-ray Scattering Study of the Complex Formation Between Elongation Factor Tu-GTP and Valyl-tRNAVal 1 from Escherichia coli, Eur. J. Biochem., 117:155.PubMedCrossRefGoogle Scholar
  44. Parmeggiani, A., and Swart, C. W. M., 1985, Mechanism of Action of Kirromycin-Like Antibiotics, Ann. Rev. Microbiol., 39:557.CrossRefGoogle Scholar
  45. Pingoud, A., Block, W., Wittenhofer, A., Wolf, H., and Fischer, E., 1982, The Elongation Factor Tu Binds Aminoacyl-tRNA in the Presence of GDP, J. Biol. Chem., 257:11261.PubMedGoogle Scholar
  46. Sjöberg, B., and Elias, P., 1978, A Small Angle X-ray Study of the Elongation Factory Complex Tu-GDP From Escherichia coli, Biochim. Biophys. Acta, 519:507.PubMedGoogle Scholar
  47. Spencer, R. D., and Weber, G., 1969, Measurements of Subnanosecond Fluorescence Lifetimes with a Cross-Correlation Phase Fluorometer, Ann. N. Y. Acad. Sci., 158:361.CrossRefGoogle Scholar
  48. Tao, T., Nelson, J. H., and Cantor, C. R., 1970, Conformational Studies on Transfer Ribonucleic Acid. Fluorescence lifetime and Nanosecond Depolarization Measurements on Bound Ethidium Bromide, Biochemistry, 23:5407.Google Scholar
  49. Thomas, J. C, Schurr, J. M., and Hare, D. R., 1984, Rotational Dynamics of Transfer Ribonucleic Acid: Effect of Ionic Strength and Concentration, Biochemistry, 23:5407.PubMedCrossRefGoogle Scholar
  50. Valeur, B., and Weber, G., 1977, Resolution of the Fluorescence Excitation Spectrum of Indole Into the 1La and 1Lb Excitation Bands, Photochem. Photobiol., 25:441.PubMedCrossRefGoogle Scholar
  51. Weber, G., 1948, Ph.D. Dissertation. St. John’s College, University of Cambridge.Google Scholar
  52. Weber, G., 1952, Polarization of the Fluorescence of Macromolecules; Theory and Experimental Method, Biochem. J., 51:145.PubMedGoogle Scholar
  53. Weber, G., and Laurence, D. J. R., 1954, Fluorescent Indicators of Adsorption in Solution and on the Solid Phase, Biochem. J., 56:31.Google Scholar
  54. Weber, G. and Teale, F. W. J., 1957, Ultraviolet Fluorescence of the Aromatic Amino Acids, Biochem. J., 65:476.PubMedGoogle Scholar
  55. Weber, G., 1977, Theory of Differential Phase Fluorometry: Detection of Anisotropie Molecular Rotations, J. Chem. Phys., 66:4081.CrossRefGoogle Scholar
  56. Weigand, G., and Kaleja, R., 1976, Fluorescent Guanosine-Nucleotide Analogs Suitable for Photoaffinity-Labeling Experiments, Eur. J. Biochem., 65:473.CrossRefGoogle Scholar
  57. Weiser, J., Mikulik, K., Zizka, Z., Stastna, J., Janada, I., and Jiranova, A., 1982, Isolation and Characterization of Streptomyces aureofaciens Protein — Synthesis Elongation Factor Tu in an aggregated State, Eur. J. Biochem., 129:127.PubMedCrossRefGoogle Scholar
  58. Wikman, F. P., Siboska, G. E., Peterson, H. U., and Clark, B. F. C., 1982, The Site of Interaction of Aminoacyl-tRNA with Elongation Factor Tu, EMBO J., 9:1095.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • David M. Jameson
    • 1
  • Theodore L. Hazlett
    • 1
  1. 1.Department of PharmacologyUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations