Advertisement

Molecular Dynamics and Structure of Peptide Hormones at Membrane-Water Interfaces

  • Jacques Gallay
  • Michel Vincent
  • Claude Nicot
  • Marcel Waks
Conference paper

Abstract

Peptide hormones of low molecular weight are among the most flexible polypeptides in living organisms (Blundell and Wood, 1982). In order to express their specific functions they must acquire a more restricted bioactive conformation conformation (Kaiser and Kezdy, 1983; 1984). As recently pointed out by Braun et al. (1983), it appears rather unlikely that the initial interaction of peptide hormones with the target cells will result in the immediate formation of a specific complex with the membrane-bound receptors at the plasma membrane level. Thermodynamic as well as kinetic considerations indeed suggest that the lipid matrix of the cell plasma membrane may have functional implications in the transmembrane signaling process by playing as an “antenna” for the capture of the peptide (Sargent and Schwyzer, 1986). Moreover, the interaction of the peptide with the membrane lipids may select a bioactive conformational state among the many existing in aqueous solutions (Behnam and Deber, 1984; Deber and Behnam, 1985; Schwyzer, 1986). The interfacial characteristics of the lipid matrix (charge density, head-group packing, availability of hydrogen-bond forming groups, mobility of the interfacial water molecules and local proton activity) are likely to be involved in the selection of a dynamic and conformational state of the peptide.

Keywords

Reverse Micelle Peptide Hormone Fluorescence Anisotropy Cell Plasma Membrane Lipid Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnam, B. A., and Deber, C.M., 1984, J. Biol. Chem., 259:14935.PubMedGoogle Scholar
  2. Blundell, T., and Wood, S., 1982, Ann. Rev. Biochem., 51:123.PubMedCrossRefGoogle Scholar
  3. Braun, W., Wider, G., Lee, K. H., and Wuthrich, K., 1983, J. Mol. Biol., 169:921.PubMedCrossRefGoogle Scholar
  4. Deber, C. M., and Behnam, B. A., 1985, Biopolymers, 24:105.CrossRefGoogle Scholar
  5. Fendler, J. H., 1984, Ann. Rev. Phys. Chem., 35:137.CrossRefGoogle Scholar
  6. Gremlich, H. U., Fringeli, P., and Schwyzer, R., 1983, Biochemistry, 22:4257.PubMedCrossRefGoogle Scholar
  7. Kaiser, E. T. and Kezdy, J. F., 1983, Proc. Natl. Acad. Sci. U.S.A., 83:5774.Google Scholar
  8. Kaiser, E. T., and Kezdy, J. F., 1984, Science, 223:249.PubMedCrossRefGoogle Scholar
  9. Sargent, D. F., and Schwyzer, R., 1986, Proc. Natl. Acad. Sci. U.S.A., 83:5774.PubMedCrossRefGoogle Scholar
  10. Schwyzer, R., 1986, Biochemistry, 25:4281.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jacques Gallay
    • 1
  • Michel Vincent
    • 1
  • Claude Nicot
    • 2
  • Marcel Waks
    • 2
  1. 1.Laboratoire pour l’Utilisation du Rayonnement Electromagnetique CNRS-CEA-MEN. Bâtiment 209 DUniversite Paris SudOrsay CedexFrance
  2. 2.E.R. 64 CNRSParis CedexFrance

Personalised recommendations