Advertisement

Enhancement of Time-Resolved Fluorescence Spectroscopy by Overdetermination

  • Myun K. Han
  • Dana G. Walbridge
  • Jay R. Knutson
  • Paolo Neyroz
  • Ludwig Brand
Conference paper

Abstract

Gregorio Weber pointed out over 25 years ago (Weber, 1961) that there are many ways in which the properties of the excited state can be utilized to study points of ignorance of the structure and function of protein molecules. He and his co-workers have led the way in finding new ways to use intrinsic and extrinsic fluorescent probes, with both steady-state and nanosecond time-resolved techniques, to investigate the static and dynamic structures of biological macromolecules. We are thankful to Gregorio, not only for pointing us in the right scientific direction, but also for showing us, by example, how scientists ought to interact with each other. This continues to make biochemical fluorescence an enjoyable field to work in.

Keywords

Decay Curve Fluorescence Decay Tryptophan Fluorescence Lifetime Component Decay Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameloot, M., Beechem, J. M., and Brand, L., 1986, Simultaneous analysis of multiple fluorescence decay curves by Laplace transforms. Deconvolution with reference or excitation profiles, Biophys. Chem., 23:155.PubMedCrossRefGoogle Scholar
  2. Badea, M. G., and Brand, L., 1979, Time-resolved fluorescence measurements, in: “Methods in Enzymology,” C.H.W. Hirs, and S. N. Timashef, eds., Academic Press, New York.Google Scholar
  3. Beechem, J. M., and Brand, L., 1985a, Time-resolved fluorescence of proteins, Ann. Rev. Biochem., 54:43.PubMedCrossRefGoogle Scholar
  4. Beechem, J. M., Ameloot, M., and Brand, L., 1985b, Global and target analysis of complex decay phenomena, Anal. Instrum., 14:379.CrossRefGoogle Scholar
  5. Beechem, J. M., Ameloot, M. A., and Brand, L., 1985c, Global analysis of fluorescence decay surfaces: Excited-state reactions, Chem. Phys.Lett., 120:446.CrossRefGoogle Scholar
  6. Beechem, J. M., and Brand, L., 1986a, Global analysis of fluorescence decay: Applications to some unusual experimental and theoretical studies, Photochem. Photobiol., 44:323.PubMedCrossRefGoogle Scholar
  7. Beechem, J. M., Ameloot, M., and Brand, L., 1986b, Analysis of fluorescence intensity and anisotropy decay surfaces, in: “Excited-state Probes in Biochemistry and Biology,” A. Szabo and L. Masotti, eds., in press.Google Scholar
  8. Beechem, J. M., Knutson, J. R., and Brand, L., 1986c, Global analysis of multiple dye fluorescence anisotropy experiments on protein, Biochem. Soc. Trans., 14:832.PubMedGoogle Scholar
  9. Blomquist, C. H., 1967, Structural changes associated with the inactivation of horse liver alcohol dehydrogenase, Arch. Biochem. Biophys., 122:24.PubMedCrossRefGoogle Scholar
  10. Brand, L., Knutson, J. R., Davenport, L., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes, in: “Spectroscopy and the Dynamics of Molecular Biological Systems”, P. M. Bayley and R. E. Dale, eds., Academic Press, London.Google Scholar
  11. Davenport, L., Knutson, J. R., and Brand, L., 1986a, Excited-state proton transfer of Equilenin and Dihydroequilenin: Interaction with bilayer vesicles, Biochemistry, 25:1186.PubMedCrossRefGoogle Scholar
  12. Davenport, L., Knutson, J. R., and Brand, L., 1986b, Anisotropy decay associated fluorescence and analysis of rotational heterogeneity. 2.1,6-diphenyl-1,3,5-hexatriene in lipid bilayers, Biochemistry, 25:1811.PubMedCrossRefGoogle Scholar
  13. Easter, J. H., DeToma, R. P., and Brand, L., 1976, Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-α-egg lecithin vesicles, Biophys. J., 16:571.PubMedCrossRefGoogle Scholar
  14. Eisenfeld, J., and Ford, C. C., 1979, A systems theory approach to the analysis of multiexponential fluorescence decay, Biophys. J., 26:73.PubMedCrossRefGoogle Scholar
  15. Grinvald, A., and Steinberg, I. Z., 1974, On the analysis of fluorescence decay kinetics by the method of least squares, Anal. Biochem., 59:583.PubMedCrossRefGoogle Scholar
  16. Han, M. K., Walbridge, D. G., LaForce, R., Shiber, S., Meadow, N., and Brand, L., 1986, Sulfhydryl studies of Enzyme I of the PTS, Biophys. J. 49:498a.Google Scholar
  17. Han, M. K., Walbridge, D. G., Knutson, J. R., Brand, L., and Roseman, S., 1987a, Nanosecond time-resolved fluorescence kinetic studies of the 5,5′-dithiobis(2-nitrobenzoic acid) reaction with Enzyme I of the phosphoenolpyruvate: glycose phosphotransferase system, Anal. Biochem., 161:479.PubMedCrossRefGoogle Scholar
  18. Han, M. K., Walbridge, D. G., Knutson, J. R., Hong, S., Roseman, S., and Brand, S., 1987b, Nanosecond time-resolved fluorescence studies of pyrene maleimide labeled Enzyme I of the PTS, Biophys. J., 51:276a.Google Scholar
  19. Han, M. K., Roseman, S., and Brand, L., 1987c, Fluorescence studies of Enzyme I of the PTS: Kinetics of the monomer/dimer association, Proc. in International Biophysics Congress, in press.Google Scholar
  20. Han, M. K., Walbridge, D. G., Knutson, J. R., and Brand, L., 1987d, Nanosecond time-resolved fluorescence: Kinetic studies of macromolecules, Proc. in International Biophysics Congress, in press.Google Scholar
  21. Heitz, J. R., and Brand, L., 1971, Fluorescence changes associated with denaturation of alcohol dehydrogenase, Arch. Biochem. Biophys., 144:286.PubMedCrossRefGoogle Scholar
  22. Holmgren, A., 1968, Thioredoxin 6. The amino acid sequence of the protein from Escherichia coli B, Eur. J. Biochem., 6:475.PubMedCrossRefGoogle Scholar
  23. Holmgren, A., 1972, Tryptophan fluorescence study of conformational transitions of the oxidized and reduced form of thioredoxin, J. Biol. Chem., 247:1992.PubMedGoogle Scholar
  24. Holmgren, A., Ohlsson, I., and Grankvist, M.-L., 1978, Radioimmunological and enzymatic determinations in wild type cells and mutants defective in phage T7 DNA replication, J. Biol. Chem., 253:430.PubMedGoogle Scholar
  25. Holmgren, A., and Roberts, G., 1976, Nuclear Magnetic Resonance Studies of Redox-Induced Conformational Changes in Thioredoxin from Escherichia Coli, FEBS Lett., 71:261.PubMedCrossRefGoogle Scholar
  26. Johnson, M. L., 1983, Evaluation and propagation of confidence intervals in nonlinear, asymmetric variance spaces, Biophys. J., 44:101.PubMedCrossRefGoogle Scholar
  27. Johnson, M. L., and Frasier, S. G., 1985, Non-linear least-squares analysis, in: “Methods in Enzymology”, C. H. W. Hirs, and S. N. Timashef, eds., Vol. 117, Part J. 301, Academic Press, New York.Google Scholar
  28. Kelley, R. F., and Stellwagen, E., 1984, Conformational transitions of thioredoxin in guanidine hydrochloride, Biochemistry, 23:5095.PubMedCrossRefGoogle Scholar
  29. Kishore, R., Mathew, M. K., and Balaram, P., 1983, A fluorescent peptide model for the thioredoxin active site, FEBS Lett., 159:221.CrossRefGoogle Scholar
  30. Knutson, J. R., Walbridge, D. W., and Brand, L., 1982, Decay associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase, Biochemistry, 21:4671.PubMedCrossRefGoogle Scholar
  31. Knutson, J. R., Beechem, J. M., and Brand, L., 1983, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett., 102:501.CrossRefGoogle Scholar
  32. Knutson, J. R., Chen, R. F., Scott, C. S., and Bowman, R. L., 1985, Studies of intrinsic protein fluorescence decay using a mode-locked laser source, Photochem. Photobio., 41:78s.Google Scholar
  33. Knutson, J. R., Davenport, L., and Brand, L., 1986, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 1. Theory and applications, Biochemistry, 25:1805.PubMedCrossRefGoogle Scholar
  34. Knutson, J. R., 1987, Global analysis of fluorescence data: Some extensions, Biophys. J., 51:285a.Google Scholar
  35. Kundig, W., Gosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. USA, 52:1067.PubMedCrossRefGoogle Scholar
  36. Kundig, W., and Roseman, S., 1971, Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli, J. Biol. Chem., 246:1393.PubMedGoogle Scholar
  37. Kukuruzinska, M. A., Harrington, W. F., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Studies on the molecular weight and association of Enzyme I, J. Biol. Chem., 257:14470.PubMedGoogle Scholar
  38. Kukuruzinska, M. A., Turner, B. N., Ackers, G. K., and Roseman, S., 1984, Subunit association of Enzyme I of the Salmonella typhimurium phospho-enolpyruvate: glycose phosphotransferase system, J. Biol. Chem., 259:11679.PubMedGoogle Scholar
  39. Loken, M. R., 1973, Determination of rates of excited-state reactions using nanosecond fluorometric techniques, Ph.D. dissertation, The Johns Hopkins University, Baltimore, MD.Google Scholar
  40. McKay, R. H., 1962, Effect of various environments on the intrinsic fluorescence polarization spectra of horse liver alcohol dehydrogenase, Arch. Biochem. Biophys., 135:218.CrossRefGoogle Scholar
  41. Meadow, N. D., Kukuruzinska, M. A., and Roseman, S., 1984, The bacterial phosphoenol pyruvate: sugar phosphotransferase system, in: “Enzymes of Biological Membranes”, A. Martonosi, Ed., Plenum, New York.Google Scholar
  42. Neyroz, P. N., Brand, L., and Roseman, S., 1987, Sugar transport by the bacterial phosphotransferase system. The intrinsic fluorescence of Enzyme I, J. Biol. Chem., submitted.Google Scholar
  43. Oppenheimer, H. L., Green, R. W., and McKay, R. H., 1967, Function of Zinc in horse liver alcohol dehydrogenase, Arch. Biochem. Biophys., 119:552.PubMedCrossRefGoogle Scholar
  44. Postma, P. W., and Rosemann, S, 1976, The bacterial phosphoenolpyruvate: Sugar phosphotransferase system, Biochim. Biophys. Acta, 457:213.Google Scholar
  45. Saffen, D. W., Presper, K. A., Doering, T. L., and Roseman, S., 1987, Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli pts H, pts I, and crr genes, J Biol. Chem., in press.Google Scholar
  46. Schuyler, R., and Isenberg, I., 1971, A monophoton fluorometer with energy discrimination, Rev. Sci. Instrum., 42:813.CrossRefGoogle Scholar
  47. Selinger, B. K., and Harris, C. M., 1983, The pile-up problem in pulse fluorometry, in: “Time-resolved fluorescence spectroscopy in Biochemistry and Biology”, R. B. Cundall and R. E. Dale, eds., Plenum, New York.Google Scholar
  48. Small, E., and Isenberg, I., 1977, On moment index displacement, J. Chem. Phys., 66:3347.CrossRefGoogle Scholar
  49. Stryer, L., Holmgren, A., and Reichard, P., 1967, Thioredoxin. A localized conformational change accompanying reduction of the protein to the sulfhydryl form, Biochemistry, 6:1016.PubMedCrossRefGoogle Scholar
  50. Turner, B. W., Pettigrew, D. W., and Ackers, G. K., 1981, Measurement and analysis of ligand-linked subunit dissociation equilibria in human hemoglobins, Methods in Enzymol., 76:596.CrossRefGoogle Scholar
  51. vandeVen, M., Han, M., Walbridge, D., Knutson, J., Shin, D., Anfinsen, C. B., and Brand, L., 1987, Fluorescence decay studies of thioredoxin: Quenching, oxidation and reduction, Biophys. J., 51:275a.CrossRefGoogle Scholar
  52. Walbridge, D. G., Knutson, J. R., and Brand, L., 1982, Fluorescence decay studies of acid denaturation of horse liver alcohol dehydrogenase, Biophys. J., 37:393a.Google Scholar
  53. Walbridge, D. G., Knutson, J. R., and Brand, L., 1987a, Nanosecond time-resolved fluorescence measurements during protein denaturation, Anal. Biochem., 161:467.PubMedCrossRefGoogle Scholar
  54. Walbridge, D. G., Knutson, J. R., Han, M. K., and Brand, L., 1987b, Nanosecond time-resolved fluorescence: A tool for chemical kinetic studies. Biophys. J., 51:284a.Google Scholar
  55. Ware, W. R., 1971, Transient luminescence measurements, in: “Creation and detection of the excited state, A. A. Lamola, ed., Decker, New York.Google Scholar
  56. Waygood, E. B., 1986, Enzyme I of the phosphoenolpyruvate: Sugar phospho-transferase system has two sites of phosphorylation per dimer, Biochemistry, 25:4085.PubMedCrossRefGoogle Scholar
  57. Weber, G., 1961, Excited states of Proteins, in: “Light and Life”, W. D. McElroy and B. Glass, eds., Johns Hopkins, Baltimore, MD.Google Scholar
  58. Weigel, N., Kukuruzinska, M. A., Nakazawa, A., Waygood, E. B., and Roseman, S., 1984, Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by Enzyme I of Salmonella typhimurium, J. Biol. Chem., 257:14477.Google Scholar
  59. Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, in: “Methods in Enzymology”, C. H. W. Hirs and S. N. Timashef, eds., Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Myun K. Han
    • 1
  • Dana G. Walbridge
    • 1
  • Jay R. Knutson
    • 1
    • 2
  • Paolo Neyroz
    • 1
  • Ludwig Brand
    • 1
  1. 1.The McCollum Pratt Institute and The Department of BiologyThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.The Laboratory of Technical Development, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations