Advertisement

Time-Resolved Fluorescence Studies on Flavins

  • Antonie Visser

Abstract

Flavins are ubiquitous in nature. They mediate in electron transfer and oxidation reactions in both bacterial, mammalian and plant systems (for a review see Müller, 1983). The natural cofactors are flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which occur in protein-bound form (Figure 1). Both FMN and FAD are biosynthesized from the precursor riboflavin (vitamin B2). Flavins are redox carriers and can exist in oxidized, one-electron reduced (radical) or two-electron reduced state. The characteristic yellow color of flavins arises from the oxidized state absorbing blue light from the visible spectrum. Excited state properties of flavins have recently been reviewed (Visser, 1987).

Keywords

Glutathione Reductase Correlation Time Fluorescence Lifetime Fluorescence Decay Flavin Adenine Dinucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameloot, M., and Hendricks, H., 1982, Criteria for Model Evaluation in the Case of Deconvolution Calculations, J. Chem. Phys., 76:4419.CrossRefGoogle Scholar
  2. Barrio, J. R., Tolman, G. L., Leonard, N. J., Spencer, R. D., and Weber, G., 1973, Flavin l, N6-ethenoadenine Dinucleotide: Dynamic and Static Quenching of Fluorescence, Proc. Natl. Acad. Sci. USA, 70:941.PubMedCrossRefGoogle Scholar
  3. Bebelaar, D., 1986, Time Response of Various Types of Photomultipliers and its Wavelength Dependence in Time-correlated Single Photon Counting with an Ultimate Resolution of 47 ps FWHM, Rev. Sci. Instrum., 57:1116.CrossRefGoogle Scholar
  4. Bootsma, J.P.C., Challa, G., Visser, A.J.W.G., and Müller, F., 1985, Polymer-bound Flavins: 5. Characterization by Static and Time-resolved Fluorescence Techniques, Polymer, 26:952.CrossRefGoogle Scholar
  5. Bosma, H., de Graaf-Hess, A.C., de Kok, A., Veeger, C., Visser, A.J.W.G., and Voordouw, G., 1982, Pyruvate Dehydrogenase Complex From Azotobacter Vinelandii: Structure, Function, and Inter-enzyme Catalysis, Ann. N.Y. Acad. Sci., 378:265.PubMedCrossRefGoogle Scholar
  6. Cross, A. J. and Fleming, G. R., 1984, Analysis of Time-resolved Fluorescence Anisotropy Decays, Biophys. J., 46:454.CrossRefGoogle Scholar
  7. Dale, R. E., Chen, L. A., and Brand, L., 1977, Rotational Relaxation of the “Microviscosity” Probe Diphenylhexatriene in Paraffin Oil and Egg Lecithin Vesicles, J. Biol. Chem., 252:7500.PubMedGoogle Scholar
  8. de Kok, A., and Visser, A.J.W.G., 1984, Mobility of Lipoamide Dehydrogenase In and Out of the Pyruvate Dehydrogenase Complex From Azotobacter Vinelandii, in: Flavins and Flavoproteins, R. C. Bray, P. C. Engel, and S. G. Mayhew, eds., Walter De Gruyter, Berlin.Google Scholar
  9. de Kok, A., and Visser, A.J.W.G., 1987, Flavin Binding Site Differences Between Lipoamide Dehydrogenase and Glutathione Reductase as Revealed by Static and Time-resolved Flavin Fluorescence (submitted).Google Scholar
  10. Eweg, J. K., Müller, F., Bebelaar, D., and van Voorst, J.D.W., 1980, Spectral Properties of (Iso)alloxazines in the Vapour Phase, Photochem. Photobiol., 31:435.CrossRefGoogle Scholar
  11. Falk, M.C., and McCormick, D. B., 1976, Synthetic Flavinyl Peptides Related to the Active Site of Mitochondrial Monoamine Oxidase. II Fluorescence Properties, Biochemistry 15:646.PubMedCrossRefGoogle Scholar
  12. Fleming, G. R., 1986, Subpicosecond Spectroscopy, Ann. Rev. Phys. Chem., 37:81.CrossRefGoogle Scholar
  13. Ghisla, S., Massey, V., Lhoste, J-M., and Mayhew, S.G., 1974, Biochemistry Fluorescence and Optical Characteristics of Reduced Flavins and Flavoproteins, 13:589.Google Scholar
  14. Gilbert, C. W., 1983, A Vector Method for the Non-linear Least Squares Reconvolution-and-Fitting Analysis of Polarized Fluorescence Decay Data, in; “Time-Resolved Fluorescence Spectroscopy”, R. B. Cundall, and R. E. Dale, eds., Plenum Press, New York.Google Scholar
  15. Grande, H. J., Visser, A.J.W.G., and Veeger, C., 1980, Protein Mobility Inside Pyruvate Dehydrogenase Complexes as Reflected by Laser Pulse Fluorometry, Eur. J. Biochem. 106:361.PubMedCrossRefGoogle Scholar
  16. Karen, A., Ikeda, N., Mataga, N., and Tanaka, F., 1983, Picosecond Laser Photolysis Studies of Fluorescence Quenching Mechanisms of Transfer State Formation in Solutions and Flavoenzymes, Photochem. Photobiol., 37:495.PubMedCrossRefGoogle Scholar
  17. Kulinski, T., Visser, A.J.W.G., O’Kane, D. J., and Lee, J., 1987, Spectroscopic Investigations of the Single Tryptophan Residue and of Riboflavin Bound to Lumazine Apoprotein from Photobacterium Leiognathi, Biochemistry, 26:540.PubMedCrossRefGoogle Scholar
  18. Lakowicz, J. R., and Weber, G., (1973), Quenching of Fluorescence by Oxygen. A Probe for Structural Fluctuations in Macromolecules, Biochemistry, 12:4161.PubMedCrossRefGoogle Scholar
  19. Lipari, G., and Szabo, A., 1980, Effect of Librational Motion on Fluorescence Depolarization and Nuclear Magnetic Resonance Relaxation in Macromolecules and Membranes, Biophys. J., 30:489.PubMedCrossRefGoogle Scholar
  20. Löfroth, J-E., 1985, Deconvolution of Single Photon Counting Data With a Reference Method and Global Analysis, Eur. Biophys. J., 13:45.CrossRefGoogle Scholar
  21. Mayhew, S. G., and Ludwig, M. L., 1975, Flavodoxins and Electron-transferring Flavoproteins, in: “The Enzymes”, P. Boyer, ed., Vol. 12, Academic Press, New York.Google Scholar
  22. Müller, F., 1983, The Flavin Redox-system and its Biological Function, in: “Topics in Current Chemistry”, Vol. 108, F. L. Boschke, ed., Springer, Berlin.Google Scholar
  23. Nakashima, N., Yoshihara, K., Tanaka, F., and Yagi, K., 1980, Picosecond Fluorescence Lifetime of the Coenzyme of D-amino Acid Oxidase, J. Biol. Chem., 255:5261.PubMedGoogle Scholar
  24. Nikolaus, B., and Grischkowsky, D., 1983, 90-fs Tunable Optical Pulses Obtained by Two-Stage Pulse Compression, Appl. Phys. Lett., 43:3.CrossRefGoogle Scholar
  25. O’Connor, D. V., and Phillips, D., 1984, “Time-Correlated Single-Photon Counting”, Academic Press, London.Google Scholar
  26. Perrin, F., 1929, La Fluorescence des Solutions. Induction Moléculaire. Polarisation et Durée d’émission. Photochimie. Ann. de Phys. 10e série, t.XII:169.Google Scholar
  27. Phillips, D., Drake, R. C., O’Connor, D. V., and Christensen, R. L., 1985, Time-Correlated Single Photon Counting (TCSPC) Using Laser Excitation, Anal. Instrum., 14:267.CrossRefGoogle Scholar
  28. Platenkamp, R. J., van Osnabrugge, H. D., and Visser, A.J.W.G., 1980, High-Resolution Fluorescence and Excitation Spectroscopy of N3-undecyllumi-flavin in n-decane, Chem. Phys. Lett., 72:104.CrossRefGoogle Scholar
  29. Platenkamp, R. J., Palmer, M. H., and Visser, A.J.W.G., 1987, Ab Initio Molecular Orbital Studies of Closed Shell Flavins, Eur. Biophys. J., in press.Google Scholar
  30. Reed, L. J., and Cox, D. J., 1970, Multienzyme Complexes, in; “The Enzymes”, P. Boyer, ed., Vol. 1, Academic Press, New York.Google Scholar
  31. Rigler, R., Claesens, F., and Kristensen, O., 1985, Picosecond Fluorescence Spectroscopy in the Analysis of Structure and motion of Biopolymers, Anal. Instrum., 14:525.CrossRefGoogle Scholar
  32. Schierbeek, A. J., van der Laan, J. M., Groendijk, H., Wierenga, R. K., and Drenth, J., 1983, Crystallization and Preliminary X-ray Investigation of Lipoamide Dehydrogenase from Azotobacter Vinelandii, J. Mol. Biol., 165:563.PubMedCrossRefGoogle Scholar
  33. Simondson, R. P., and Tollin, G., 1980, Structure-function Relations in Flavodoxins, Mol. Cell. Biochem., 33:13.Google Scholar
  34. Spencer, R. D., and Weber, G., 1969, Measurements of Subnanosecond Fluorescence Lifetimes with a Cross-correlation Phase Fluorometer, Ann. N.Y. Acad. Sci., 158:361.CrossRefGoogle Scholar
  35. Spencer, R. D., and Weber, G, 1972, Thermodynamic and Kinetics of the Intramolecular Complex in Flavin-Adenine Dinucleotide, in: “Structure and Function of Oxidation-Reduction Enzymes”, Å. Åkeson, and A. Ehrenberg, eds., Pergamom, Oxford.Google Scholar
  36. Thieme, R., Pai, E. F., Schirmer, R. H., and Schulz, G. E., 1981, Three-dimensional Structure of Glutathione Reductase at 2 Å Resolution, J. Mol. Biol., 152:763.PubMedCrossRefGoogle Scholar
  37. van Hoek, A., and Visser, A.J.W.G., 1981, Pulse Selection System With Electro-optic Modulators Applied to Mode-locked CW Lasers and Time-resolved Single Photon Counting, Rev. Sci. Instrum., 52:1199.CrossRefGoogle Scholar
  38. van Hoek, A., and Visser, A.J.W.G., 1985, Artefact and Distortion Sources in Time-correlated Single Photon Counting, Anal. Instrum., 14:359.CrossRefGoogle Scholar
  39. Veeger, C., Visser, A.J.W.G., Krul, J., Grande, H. J., de Abreu, R.A., and de Kok, A., 1976, Fluorescence Studies on Lipoamide Dehydrogenase, Pyruvate Dehydrogenase Complexes and Transhydrogenase, in: “Flavins and Flavoproteins”, T. P. Singer, ed., Elsevier, Amsterdam.Google Scholar
  40. Vervoort, J., Müller, F., Mayhew, S. G., van den Berg, W.A.M., Moonen, C.T.W. and Bacher, A., 1986, A Comparative Carbon-13, Nitrogen-15, and Phosphorous-31 Nuclear Magnetic Resonance Study on the Flavodoxins From Clostridium MP, Megasphaera elsdenii and Azotobacter vinelandii, Biochemistry, 25:6789.PubMedCrossRefGoogle Scholar
  41. Visser, A.J.W.G., Grande, H. J., Müller, F., and Veeger, C., 1974, Intrinsic Luminescence Studies on the Apoenzyme and Holoenzyme of Lipoamide Dehydrogenase, Eur. J. Biochem., 45:99.PubMedCrossRefGoogle Scholar
  42. Visser, A.J.W.G., Li, T. M., Drickamer, H. G. and Weber, G., 1977a, Volume Changes in the Formation of Internal Complexes of Flavinyl Tryptophan Peptides, Biochemistry, 16:4883.PubMedCrossRefGoogle Scholar
  43. Visser, A.J.W.G., Li, T. M., Drickamer, H. G. and Weber, G., 1977b, Effect of Pressure Upon the Fluorescence of Various Flavodoxins, Biochemistry, 16:4879.PubMedCrossRefGoogle Scholar
  44. Visser, A.J.W.G., and van Hoek, A., 1979, The Measurement of Subnanosecond Fluorescence Decay of Flavins Using Time-correlated Photon Counting and a Mode-locked Ar Ion Laser, J. Biochem. Biophys. Methods, 1:195.PubMedCrossRefGoogle Scholar
  45. Visser, A.J.W.G., Grande, H. J., and Veeger, C., 1980, Rapid Relaxation Processes in Pig Heart Lipoamide Dehydrogenase Revealed by Subnanosecond Resolved Fluorometry, Biophys. Chem., 12:35.PubMedCrossRefGoogle Scholar
  46. Visser, A.J.W.G., and van Hoek, A., 1981, The Fluorescence Decay of Reduced Nicotinamides in Aqueous Solution After Excitation With a UV Mode-locked Ar Ion Laser, Photochem. Photobiol., 33:35.CrossRefGoogle Scholar
  47. Visser, A.J.W.G., Scouten, W. H., and Lavalette, D., 1981, Rotational Diffusion of Eosin Labeled Pyruvate Dehydrogenase Complex of Escherichia coli, Eur. J. Biochem., 121:233.PubMedCrossRefGoogle Scholar
  48. Visser, A.J.W.G., Penners, N.H.G., and Müller, F., 1983a, Dynamic Aspects of Protein-Protein Association Revealed by Anisotropy Decay Measurements, in: “Mobility and Recognition in Cell Biology”, H. Sund, and C. Veeger, eds., Walter De Gruyter, Berlin.Google Scholar
  49. Visser, A.J.W.G., Santema, J. S., and van Hoek, A., 1983b, Energy Transfer in Biflavinyl Compounds as Studied with Fluorescence Depolarization, Photobiochem. Photobiophys., 6:47.Google Scholar
  50. Visser, A.J.W.G., 1984, Kinetics of Stacking Interactions in Flavin Adenine Dinucleotide from Time-Resolved Flavin Fluorescence, Photochem. Photobiol., 40:703.PubMedCrossRefGoogle Scholar
  51. Visser, A.J.W.G., Penners, N.H.G., van Berkel, W.J.H., and Müller, F., 1984a, Rapid Relaxation Processes in P-hydroxybenzoate Hydroxylase From Pseudomonas Fluorescens revealed by Subnanosecond-Resolved Laser-Induced Fluorescence, Eur. J. Biochem., 143:189.PubMedCrossRefGoogle Scholar
  52. Visser, A.J.W.G., Santema, J. S., and van Hoek, A., 1984b, Spectroscopic and Dynamic Characterization of FMN in Reversed Micelles Entrapped Water Pools, Photochem. Photobiol., 39:11.CrossRefGoogle Scholar
  53. Visser, A.J.W.G., Ykema, T., van Hoek, A., O’Kane, D. J., and Lee, J., 1985, Determination of Rotational Correlation Times From Deconvoluted Fluorescence Anisotropy Decay Curves. Demonstration With 6,7-dimethyl-8-ribityllumazine and lumazine protein from Photobacterium leiognathi as Fluorescent Indicators, Biochemistry, 24:1489.PubMedCrossRefGoogle Scholar
  54. Visser, A.J.W.G, 1987, Excited States of Flavins, in: “Excited State Probes in Biochemistry and Biology”, A. G. Szabo, and L. Masotti, eds., Plenum, New York, in press.Google Scholar
  55. Vos, K., van Hoek, A., and Visser, A.J.W.G., (1987), Application of a Reference Convolution Method to Tryptophan Fluorescence in Proteins. A Refined Description of Rotational Dynamics, Eur. J. Biochem., in press.Google Scholar
  56. Wahl, P. H., Auchet, J-C., and Donzel, B., 1974, The Wavelength Dependence of the Response of a Pulse Fluorometer Using the Single Photoelectron Counting Method, Rev. Sci. Instrum., 45:38.CrossRefGoogle Scholar
  57. Watenpaugh, K. D., Sieker, L. C., and Jensen, L. H., 1973, The Binding of Riboflavin-5-Phosphate in a Flavoprotein: Flavodoxin at 2.0 Å Resolution, Proc. Natl. Acad. Sci. USA, 70:3857.PubMedCrossRefGoogle Scholar
  58. Weber, G., 1948, The Quenching of Fluorescence in Liquids by Complex Formation. Determination of the Mean Life of the Complex, Trans. Faraday Soc., 44:185.CrossRefGoogle Scholar
  59. Weber, G., 1950, Fluorescence of Riboflavin and Flavin-Adenine Dinucleotide, Biochem. J., 47:114.PubMedGoogle Scholar
  60. Weber, G., 1952, Rotational Brownian Motion and Polarization of the Fluorescence in Solutions, Adv. Protein Chem., 8:415.CrossRefGoogle Scholar
  61. Weber. G., and Teale, F.W.J., 1957, Determination of the Absolute Quantum Yield of Fluorescent Solution, Trans. Faraday Soc., 53:646.CrossRefGoogle Scholar
  62. Weber, G., 1966, Intramolecular Complexes of Flavins, in: “Flavins and Flavoproteins”, E. C. Slater, ed., Elsevier, Amsterdam.Google Scholar
  63. Weber, G., Tanaka, F., Okamoto, B. Y., and Drickamer, H. G., 1974, The Effect of Pressure on the Molecular Complex of Isoalloxazine and Adenine, Proc. Natl. Acad. Sci. USA, 71:1264.PubMedCrossRefGoogle Scholar
  64. Wyaendts van Resandt, R. W., Vogel, R. H., and Provencher, S. W., 1982, Double Beam Fluorescence Lifetime Spectrometer with Subnanosecond Resolution: Application to Aqueous Tryptophan, Rev. Sci. Instrum., 53:1392.CrossRefGoogle Scholar
  65. Yagi, K., Tanaka, F., Nakashima, N., and Yoshihara, K., 1983, Picosecond Laser Fluorometry of FAD of D-amino Acid Oxidase-Benzoate Complex, J. Biol. Chem., 258:3799.PubMedGoogle Scholar
  66. Zuker, M., Szabo, A. G., Bramall, L., Krajcarski, D. T., and Selinger, B., 1985, Delta Function Convolution Method (DFCM) for Fluorescence Decay Experiments, Rev. Sci. Instrum., 56:14.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Antonie Visser
    • 1
  1. 1.Department of BiochemistryAgricultural UniversityWageningenThe Netherlands

Personalised recommendations