Advertisement

Intramolecular Excitation Energy Transfer in Bichromophoric Molecules - Fundamental Aspects and Applications

  • Bernard Valeur

Abstract

The bichromophoric molecules considered in the present paper consist of two chromophores covalently linked by a molecular spacer (for instance, a polymethylene chain) so that no conjugation between them is possible. Several intramolecular excited-state processes can occur in this kind of molecule (De Shryver et al., 1977a).

Keywords

Energy Transfer Propylene Glycol Transfer Efficiency Excitation Energy Transfer Intramolecular Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anton, J. A., Loach, P. A., and Govindjee, 1978, Transfer of Excitation Energy Between Porphyrin Centers of a Covalently-Linked Dimer, Photochem. Photobiol., 28:235.CrossRefGoogle Scholar
  2. Berlman, I., 1973, Energy Transfer Parameters of Aromatic Molecules, Academic Press, NY.Google Scholar
  3. Birks, J. B., 1970, Photophysics of Aromatic Molecules, Wiley, NY.Google Scholar
  4. Bourson, J., Mugnier, J., and Valeur, B., 1982, Frequency Conversion of Light by Intramolecular Energy Transfer in Bifluorophoric Molecules, Chem. Phys. Letters, 92:430.CrossRefGoogle Scholar
  5. Breen, D. E., and Keller, R. A., 1968, Intramolecular Energy Transfer Between Triplet States of Weakly Interacting Chromophores. I. Compounds in Which the Chromophores are Separated by a Series of Methylene Groups, J. Am. Chem. Soc, 90:1935.CrossRefGoogle Scholar
  6. Bunting, J. R., and Filipescu, N., 1970, Intramolecular Energy Transfer in Rigid Model Compounds. Singlet and Triplet Transfer Between Cyclopentanone and Phenanthrene, J. Chem. Soc. B 1750.Google Scholar
  7. Cantor, C. R., and Pechukas, P., 1971, Determination of distance distribution functions by singlet-singlet energy transfer, Proc. Nat. Acad. Sci. U.S.A., 68:2099CrossRefGoogle Scholar
  8. Chiu, H. C., and Bersohn, R., 1977, Electronic Energy Transfer Between Tyrosine and Tryptophan in the Peptides Trp-(Pro)n-Tyr, Biopolymers, 16:277.PubMedCrossRefGoogle Scholar
  9. Conrad, R. H., and Brand, L., 1968, Intramolecular Transfer of Excitation From Tryptophan to 1-Dimethylaminonaphthalene-5-Sulfonamide in a Series of Model Compounds, Biochemistry, 7:5777.CrossRefGoogle Scholar
  10. Cowan, D. O., and Baum, A. A., 1970, Intramolecular Triplet Energy Transfer, J. Am. Chem. Soc., 92:2153.CrossRefGoogle Scholar
  11. Dale, R. E., 1978, Fluorescence Depolarization and Orientation Factors for Excitation Energy Transfer Between Isolated Donor and Acceptor Fluorophore Pairs at Fixed Intermolecular Separations, Acta Phys. Polon., A 54:743.Google Scholar
  12. De Member, J. R., and Filipescu, N., 1968, Intramolecular Energy Transfer Between Nonconjugated Chromophores. Effect of Rigid Perpendicular Orientation, J. Am. Chem. Soc, 90:6425.CrossRefGoogle Scholar
  13. De Schryver, F. C., Boens, N., and Put, J., 1977a, Excited-State Behavior of Some Bichromophoric Systems, Adv. Photochem., 10:359.CrossRefGoogle Scholar
  14. De Schryver, F. C., Boens, N., and Put, J., 1977b, Excited-State Behavior of Some Bichromophoric Systems, Adv. Photochem., 10:379.Google Scholar
  15. Desvergne, J. P., Bitit, N, Castellan, A., and Bouas-Laurent, H., 1983, Study of Non-Conjugated Bichromophoric Systems Part 3. The Photo-cyclomerization of 9-(l-naphthylmethoxymethyl) anthralene and 9-(2-Furylmethoxymethyl)anthracene. Interest of the CH2-O-CH2 Link, J. Chem. Soc, Perkin Trans. 11:109.Google Scholar
  16. Dexter, D. L., 1964, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys., 21:836.CrossRefGoogle Scholar
  17. Ebata, T., Suzuki, Y., Mikami, N., Miyashi, T., and Ito, M., 1984, Intramolecular Electronic Energy Transfer of Bichromophoric Molecules in a Supersonic Free Jet, Chem. Phys. Letters, 110:597.CrossRefGoogle Scholar
  18. Eisinger, J., Feuer, B., and Lamola, A. A., 1969, Intramolecular Singlet Excitation Transfer. Applications to Polypeptides, Biochemistry, 8:3908.PubMedCrossRefGoogle Scholar
  19. Eisinger, J., and Lamola, A. A., 1971, in: “Excited States of Proteins and Nucleic Acids”, ch. 3, R. F. Steiner and I. Weinryb, ed., Plenum Press, New York.Google Scholar
  20. Felker, P. M., Syage, J. A., Lambert, W. R., and Zewail, A. H., 1982, Direct Observation of Intramolecular Energy Transfer by Selective Picosecond Laser Excitation of a Single Chromophore in Jet-Cooled Molecules, Chem. Phys. Letters, 92:1.CrossRefGoogle Scholar
  21. Filipescu, N., de Member, J. R., and Minn, F. L., 1969, Intramolecular Triplet-Triplet Energy Transfer Between Nonconjugated Chromophores With Fixed Orientation, J. Am. Chem. Soc., 91:4169.CrossRefGoogle Scholar
  22. Förster, Th., 1949, Experimentelle und Theoretische Untersuchung des Zwischen-molekularen Ubergangs von Elektronenan Regungsenergie, Z. Naturforseh,. 49:321; 1959, Transfer Mechanisms of Electronic Excitation, Discuss. Faraday Soc, 27:7.Google Scholar
  23. Gaugain, B., Barbet, J., Oberlin, R., Roques, B. P., and Le Pecq, J. B., 1978a, DNA Bifunctional Intercalators. 1. Synthesis and Conformational Properties of an Ethidium Homodimer and of an Acridine Ethidium Heterodimer, Biochemistry, 17:5071.PubMedCrossRefGoogle Scholar
  24. Gaugain, B., Barbet, J., Capelle, N., Roques, B. P., and Le Pecq, J. B., 1978, DNA Bifunctional Intercalators. 1. Synthesis and Conformational Properties of an Ethidium Homodimer and of an Acridine Ethidium Heterodimer, Biochemistry, 17:5078.PubMedCrossRefGoogle Scholar
  25. Getz, D., Ron, A., and Speiser, S., 1980a, Intramolecular Energy Transfer From a Vibronic State of a Bichromophoric Molecule, J. Mol. Struct., 61:61.CrossRefGoogle Scholar
  26. Getz, D., Ron, A., Rubin, M. B., and Speiser, S., 1980b, Dual Fluorescence and Intramolecular Electronic Energy Transfer in a Bichromophoric Molecule, J. Phys. Chem., 84:768.CrossRefGoogle Scholar
  27. Grinvald, A., Haas, E., and Steinberg, I. Z., 1972, Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay, Proc. Acad. Sci. U.S.A., 69:2273.CrossRefGoogle Scholar
  28. Gryszynski, I., Kawski, A., Paszyc, S., Skalski, B., and Tempczyk, A., 1985, Hypochromic Effect and Electronic Excitation Energy Transfer in Yt-(CH2)n-Adenine Systems, J. Photochem., 30:153.CrossRefGoogle Scholar
  29. Guillard, R., Leclerc, M., Loffet, A., Leonis, J., Wilmet, B., and Englert, A., 1975, Dimensions of Oligopeptides by Singlet-Singlet Energy Transfer and Theoretical Calculations. I. Influence of Glycine on the Dimensions of Tetrapeptides, Macromolecules, 8:134.PubMedCrossRefGoogle Scholar
  30. Guillard, R., and Englert, A., 1976, Interpretation of Energy-Transfer Experiments by Theoretical Studies of Model Compounds Using Semiempirical Potential Functions. I. Three Linked Aromatic Peptide Units, Biopolymers, 15:1301.PubMedCrossRefGoogle Scholar
  31. Gust, D., and Moore, T. A., 1985, A Synthetic System Mimicking the Energy Transfer and Charge Separation of Natural Photosynthesis, J. Photochem. 29:173 and references cited therein.CrossRefGoogle Scholar
  32. Gust, D., Moore, T. A., Bensasson, R. V., Mathis, P., Land, E. J., Chachaty, C., Moore, A. L., Liddell, P., and Nemeth, G. A., 1985, Stereodynamics of Intramolecular Triplet Energy Transfer in Carotenoporphyrins, J. Am. Chem. Soc., 107:3631.CrossRefGoogle Scholar
  33. Haas, E., Wilchek, M., Katchalski-Katzir, E., and Steinberg, I. Z., 1975, Distribution of End-to-End Distances of Oligopeptides in Solution as Estimated by Energy Transfer, Proc. Nat. Acad. Sci. U.S.A., 72:1807.CrossRefGoogle Scholar
  34. Haas, E., Katchalski-Katzir, E., and Steinberg, I. Z., 1978, Brownian Motion of the Ends of Oligopeptide Chains in Solution as Estimated by Energy Transfer Between the Chain Ends, Biopolymers 17:11.CrossRefGoogle Scholar
  35. Hassoon, S., Lustig, H., Rubin, M. B., and Speiser, D., 1983, Molecular Structure Effects in Intramolecular Electronic Energy Transfer, Chem. Phys. Lett., 98:345.CrossRefGoogle Scholar
  36. Hassoon, S., Lustig, H., Rubin, M. B., and Speiser, S., 1984, The Mechanism of Short-range Intramolecular Electronic Energy in Bichromophoric Molecules, J. Phys. Chem., 88:6367.CrossRefGoogle Scholar
  37. Haugland, R. P., Ygeurabide, J., and Stryer, L, 1971, Dependence of the Kinetics of Singlet-Singlet Energy Transfer on Spectral Overlap, Proc. Nat. Acad. Sci., 63:23.CrossRefGoogle Scholar
  38. Kaizu, Y., Maekawa, H., and Kobayashi, H., 1986, Upper Excited-State Emission of a Covalently Linked Porphyrin Dimer, J. Phys. Chem., 90:4234.CrossRefGoogle Scholar
  39. Keller, R. A., and Dolby, L. J., 1967, Rate Constants and the Mechanism for the Transfer of Triplet Excitation Energy, J. Am. Chem. Soc, 89:2768; 1969, Intramolecular Energy Between Triplet States of Weakly Interacting Chromophores III Compounds in Which the Chromophores are Separated by a Rigid Steroid Bridge, 91:1293.CrossRefGoogle Scholar
  40. Keller, R. A., 1968, Intramolecular Energy Transfer Between Triplet States of Weakly Interacting Chromophores. II. Compounds in Which the Chromophores are Perpendicular to Each Other, J. Am. Chem. Soc, 90:1940.CrossRefGoogle Scholar
  41. Ketskemety, I., Farkas, E., Toth, Zs., and Gati, L., 1982, Intramolecular Energy Transfer in Laser Active Bichromophoric Molecules, Acta Phys. Chem., 28:3.Google Scholar
  42. Kopainsky, B., Kaiser, W., and Schäfer, F. P., 1978, Ultrafast Energy Transfer Within Bifluorophoric Molecules, Chem. Phys. Lett., 56:458.CrossRefGoogle Scholar
  43. Lamola, A. A., 1969, Intramolecular Excitation Transfer in 1,4-dimethoxy-5,8-methano-6,7-exo-[fluorene-9′-spiro-l″-cyclopropane]naphthalene, J. Am. Chem. Soc, 91:4786.CrossRefGoogle Scholar
  44. Lamola, A. A., Leermakers, P. A., Byers, G. W., and Hammond, G. S., 1965, Intramolecular Electronic Energy Transfer Between Nonconjugated Chromaphores in Some Model Compounds, J. Am. Chem. Soc, 37:2322.CrossRefGoogle Scholar
  45. Latt, S. A., Cheung, H. T., and Blout, E. R., 1965, Energy Transfer. A System With Relatively Fixed Donor-Acceptor Separation, J. Am. Chem. Soc, 87:995.PubMedCrossRefGoogle Scholar
  46. Leclerc, M., Premilat, S., and Englert, A., 1978, Nonradiative Energy Transfer in Oligopeptide Chains Generated by a Monte-Carlo Method Including Long-Range Interactions, Biopolymers, 17:2459.CrossRefGoogle Scholar
  47. Lee, Y. J., Summers, W. A., and Burr, J. G., 1977, Energy Transfer in Fluorescent Derivatives of Uracil and Thymine, J. Am. Chem. Soc., 99:7679.PubMedCrossRefGoogle Scholar
  48. Leermakers, P. A., Byers, G. W., Lamola, A. A., and Hammond, G. S., 1963, Intramolecular Electronic Energy Transfer in 4-(l-Naphthylmethyl)-Benzophenone, J. Am. Chem. Soc., 85:2670.CrossRefGoogle Scholar
  49. Liphardt, B., Liphardt, B., and Lüttke, W., 1981, Laser Dyes With Intramolecular Triplet Quenching, Opt. Comm., 38:207.CrossRefGoogle Scholar
  50. Liphardt, B., Liphardt, B., Lüttke, W., and Ouw, D., 1982, Energy Transfer Processes in Two Different Bifluorophoric Laser Dyes, Appl. Phys., B 29:73.Google Scholar
  51. McDonagh, A. F., and Lightner, D. A., 1985, Intramolecular Energy Transfer in Bilirubins, in: “Primary Photo-processes in Biology and Medicine”, R. V. Bensasson, G. Jori, E. J. Land and T. G. Truscott, eds., Plenum Publishing Corp., New York.Google Scholar
  52. Mes, G. F., de Jong, B., Van Ramesdonk, H. J., Verhoeven, J. W., Warman, J. M., de Haas, M. P., and Horsman-van den Dool, L.E.W., 1984, Excited-State Dipole Moment and Solvatochromism of Highly Fluorescent Rod-Shaped Bichromophoric Molecules, J. Am. Chem. Soc, 106:6524.CrossRefGoogle Scholar
  53. Mialocq, J. C., Gianotti, C., Maillard, P., and Momenteau, M., 1984, Energy Transfer in “Covalently Linked” and “Face-to-Face” Bisporphyrins, Chem. Phys. Letters, 112:87.CrossRefGoogle Scholar
  54. Moore, A. L., Dirks, G., Gust, D., and Moore, T. A., 1980, Energy Transfer From Carotenoid Polyenes to Porphyrins: A Light-Harvesting Antenna, Photochem. Photobiol., 32:691.CrossRefGoogle Scholar
  55. Mugnier, J., Puget, J., Bourson, J., and Valeur, B., 1985a, Efficiency of Intramolecular Electronic Energy Transfer in Coumarin Bichromophoric Molecules, J. Lumin., 33:273.CrossRefGoogle Scholar
  56. Mugnier, J., Pouget, J., Bourson, J. and Valeur, B. to be published.Google Scholar
  57. Mugnier, J., Valeur, B., and Gratton, E., 1985b, Rate of Intramolecular Electronic Energy Transfer in Coumarin Bichromophoric Molecules. An Investigation by Multifrequency Phase-Modulation Fluorometry, Chem. Phys. Letters, 119:217.CrossRefGoogle Scholar
  58. Okada, T., Fiyita, T, Kubota, M., Masaki, S., and Mataga, M., 1972, Intrachain Reaction of a Pair of Reaction Groups Attached to Polymer Ends. 8. Static and Dynamic Studies on the End-to-end Intrachain Energy Transfer on a Polysarcosine Chain, Chem. Phys. Letters, 14:563.CrossRefGoogle Scholar
  59. Petersen, N. O., 1985, Intramolecular Fluorescence Energy Transfer in Nitrobenzoxadiozole Derivatives of Polyene Antibiotics, Can. J. Chem., 63:77.CrossRefGoogle Scholar
  60. Rauh, R. D., Evans, T. R., and Leermakers, P. A., 1969, Intramolecular Electronic Energy Transfer in Some Indole Alkaloids and Related Donor-Acceptor Systems, J. Am. Chem. Soc, 90:6897; 1969, 91:1868.CrossRefGoogle Scholar
  61. Sarkar, H. K., Song, P.-S., Park, S. C., and Lee, J., 1982, Model for Photosynthetic Light Harvesting System: Energy Transfer in Anthracene-and Biphenyl-Chlorophyll Derivatives, J. Lumin., 26:347.CrossRefGoogle Scholar
  62. Schäfer, F. P., Bor, Zs., Lüttke, W., and Liphardt, B., 1978, Bifluoro-phoric Laser Dyes With Intramolecular Energy Transfer, Chem. Phys. Lett., 56:455.CrossRefGoogle Scholar
  63. Schäfer, F. P., Zhang, F.-G., and Jethwa, J., 1982, Intramolecular TT-Energy Transfer in Bifluorophoric Laser Dyes, Appl. Phys. B 28:37.Google Scholar
  64. Schnepp, O., and Levy, M., 1962, Intramolecular Energy Transfer in a Naphthalene-Anthracene System, J. Am. Chem. Soc, 84:172.CrossRefGoogle Scholar
  65. Schwarz, F. P., Gouterman, M., Muljiani, Z., and Dolphin, D. H., 1972, Energy Transfer Between Covalently Linked Metal Porphyrins, Bioinorg. Chem., 2:1.CrossRefGoogle Scholar
  66. Selensky, R, Holten, D., Windsor, M. W., Pain III, J. B., Dolphin, D. H., Gouterman, M., and Thomas, J. C., 1981, Excitonic Interactions in Covalently-Linked Porphyrin Dimers, Chem. Phys., 60:33, and references cited therein.CrossRefGoogle Scholar
  67. Sisido, M., Imanishi, Y., and Higashimura, T., 1979, Molecular Weight Distribution of Polysarcosine Obtained by NCA [N-carboxy-d-amino acid anhydride] Polymerization, Macromolecules, 12:975.CrossRefGoogle Scholar
  68. Sisido, M., Egusa, S., Yagyu, K., and Imanishi, Y., 1985, Intramolecular End-to-End Energy Transfer on Polypeptide Chains. Effects of Chain Length, Temperature, and Chain Stiffness, Polymer J., 17:587.CrossRefGoogle Scholar
  69. Speiser, S., 1983, Novel Aspects of Intermolecular and Intramolecular Electronic Energy Transfer in Solution, J. Photochemistry, 22:195.CrossRefGoogle Scholar
  70. Speiser, S., Katraro, R., Welner, S., and Rubin, M. B., 1980, Intramolecular Electronic Energy Transfer in l, 8(6′, 7′-dioxodeca-methylene)phenanthrene, Chem. Phys. Lett., 61:199.CrossRefGoogle Scholar
  71. Speiser, S., and Katriel, J., 1983, Intramolecular Electronic Energy Transfer Via Exchange Interaction in Bichromophoric Molecules, Chem. Phys. Lett., 102:88.CrossRefGoogle Scholar
  72. Steinberg, I. Z., 1971, Long-range Nonradiative Transfer of Electronic Excitation Energy in Proteins and Polypeptides, Ann. Rev. Biochem., 40:83.PubMedCrossRefGoogle Scholar
  73. Stryer, L., 1978, Fluorescence Energy Transfer as a Spectroscopic Ruler, Ann. Rev. Biochem., 47:819.PubMedCrossRefGoogle Scholar
  74. Stryer, L., and Haugland, R. P., 1967, Energy Transfer: A Spectroscopic Ruler, Proc. Nat. Acad. Sci. U.S.A., 58:719.CrossRefGoogle Scholar
  75. Tamaki, T., 1973, Intramolecular Interaction Between the Phenol and the Indole Chromophores, Bull. Chem. Soc. Jap., 46:2527.CrossRefGoogle Scholar
  76. Thiery, C., 1970, Intramolecular Excitation Transfer: A Spectroscopic Study of a Series of Neuroleptic Derivatives of Para-Fluorobutyro-phenone, Mol. Photochem., 2:1.Google Scholar
  77. Turro, N. J., 1978, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, California, chapter 9.Google Scholar
  78. Vandendriessche, J., Collart, P., De Schryver, F. C., Zhou, Q. F., and Xu, H. J., 1985, Reversible Singlet Energy Transfer in 1,3-Di(2-naphthyl) propyl acetate, Macromolecules, 18:2321.CrossRefGoogle Scholar
  79. Visser, A.J.W.G., Santema, J. S., and von Hoek, A., 1983, Energy Transfer in Biflavinyl Compounds as Studied with Fluorescence Depolarization, Photobiochem. Photobiophys., 6:47.Google Scholar
  80. Weber, G., 1957, Intramolecular Transfer of Electronic Energy in Dihydro-diphosphopyridine Nucleotide, Nature (London), 180:1409.CrossRefGoogle Scholar
  81. Weber, G., and Teale, F.W.J., 1958, Fluorescence Excitation Spectrum of Organic Compounds in Solution. Part 1. Systems With Quantum Yield Independent of the Exciting Wavelength, Trans. Far. Soc., 54:640.CrossRefGoogle Scholar
  82. Wenska, G., and Paszyk, S., 1984, Coumarin-Nucleotide Base Pairs Ultraviolet Absorption, Fluorescence, and Photochemical Study, Can. J. Chem., 62:2006.CrossRefGoogle Scholar
  83. Wilkinson, F., 1968, in: “Luminescence in Chemistry”, E. J. Bowen, ed., Van Ostrand, London, chapter 8.Google Scholar
  84. Zachariasse, K. A., Duvenek, G., and Kühnle, W., 1985, Double Exponential Decay in Intramolecular Excimer Formation: l,3-di(2-Pyrenyl)Propane, Chem. Phys. Letters, 113:337.CrossRefGoogle Scholar
  85. Zimmerman, H. E., and McKelvey, R. D., 1971, Electron and Energy Transfer Between Bicyclo[2.2.2]octane Bridgehead Moieties, J. Am. Chem. Soc., 93:3638.CrossRefGoogle Scholar
  86. Zimmerman, H. E., Goldman, T. D., Hirzel, T. K., and Schmidt, S. P., 1980, Rod-like Organic Molecules. Energy Transfer Studies Using Single Photon Counting, J. Org. Chem., 45:3934.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Bernard Valeur
    • 1
  1. 1.Laboratoire de Chimie GénéraleConservatoire National des Arts et MétiersParisFrance

Personalised recommendations