Advertisement

Fluorescence Studies of the Calcium-Dependent Functions of Calmodulin

  • Sonia R. Anderson
  • Dean A. Malencik
Conference paper

Abstract

Calmodulin is a major intracellular Ca2+ receptor in eucaryotic cells. The binding of Ca2+ stabilizes one or more conformations of the calmodulin molecule recognized by calmodulin-dependent enzymes such as cyclic nucleotide phosphodiesterase (Cheung, 1967); adenylate cyclase (Cheung et al., 1975; Brostrom et al., 1975); phosphorylase kinase ([Grand et al., 1981; cf review by Malencik & Fischer, 1983); and myosin light chain kinase (cf reviews by Stull, 1980; Small & Sobieszek, 1980; Perry et al., 1984). Large increases in catalytic activity typically result from the association of these enzymes with the calcium-calmodulin complex. A variety of small non-protein ligands also undergo calcium-dependent interactions with calmodulin. The best known of these are the phenothiazine drugs and other pharmacological agents first described by Levin and Weiss (1977). Since evidence suggests that these molecules recognize parts of calmodulin which are the same as (or closely related to) the association sites for calmodulin-dependent enzymes, they have been embraced as models for the characterization of the enzyme-calmodulin interface. However, the information obtainable from them is necessarily incomplete.

Keywords

Myosin Light Chain Kinase Cyclic Nucleotide Phosphodiesterase Smooth Muscle Myosin Calcium Binding Site Calmodulin Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amadö, R., Aeschbach, R., and Neukom, H., 1984, In Vitro Production and Characterization, Methods Enzymol., 107:377.PubMedCrossRefGoogle Scholar
  2. Anderson, S. R., and Malencik, D.A., 1986, Peptides Recognizing Calmodulin, in: “Calcium and Cell Function,” W. Y. Cheung, ed., Academic Press, New York.Google Scholar
  3. Babu, Y.S., Sack, J.S., Greenhough, T.G., Bugg, C.E., Means, A.R., and Cook, W. J., 1985, Three-Dimensional Structure of Calmodulin, Nature, 315:37.PubMedCrossRefGoogle Scholar
  4. Banks, B.E.C., and Shipolini, R.A., 1986, Chemistry and Pharmacology of Honey-bee Venom, Venoms of the Hymenoptera, in: “Biochemical, Pharmacological, and Behavioral Aspects,” T. Piek, ed., Academic Press, New York.Google Scholar
  5. Barnette, M.S., Daly, R., and Weiss, B., 1983, Inhibition of Calmodulin Activity by Insect Venom Peptides, Biochem. Pharmacol., 32:2929.PubMedCrossRefGoogle Scholar
  6. Berg, O.G., Winter, R.B., and von Hippel, P.H., 1981, Diffusion-driven Mechanisms of Protein Translocation on Nucleic Acids 1. Models and Theory, Biochemistry, 20:6929.PubMedCrossRefGoogle Scholar
  7. Blumenthal, D.K., Takio, K., Edelman, A.M., Charbonneau, H., Titani, K., Walsh, K.A. and Krebs, E.G., 1985, Identification of the Calmodulin-Binding Domain of Skeletal Muscle Myosin Light Chain Kinase, Proc. Natl. Acad. Sci., U.S.A., 82:3187.PubMedCrossRefGoogle Scholar
  8. Brostrom, C.O., Huang, Y.C., Breckenridge, B. McL., and Wolff, D.J., 1975, Identification of a Calcium-Binding Protein as a Calcium-Dependent Regulator of Brain Adenylate Cyclase, Proc. Natl. Acad. Sci. U.S.A., 72:64.PubMedCrossRefGoogle Scholar
  9. Burger, D., Cox, J.A., Comte, M., and Stein, E.A., 1984, Sequential Conformational Changes in Calmodulin upon Binding of Calcium, Biochemistry, 23:1966.CrossRefGoogle Scholar
  10. Carlson, G.M., Bechtel, P.J., and Graves, D.J., 1979, Chemical and Regulatory Properties of Phosphorylase Kinase and Cyclic AMP-Dependent Protein Kinase, Adv. in Enzymol. Relat. Areas Mol. Biol., 50:41.Google Scholar
  11. Chao, S.H., Suzuki, Y., Zysk, J.R., and Cheung, W.Y., 1984, Activation of Calmodulin by Various Metal Cations as a Function of Ionic Radius, Mol. Pharmacol., 26:75.PubMedGoogle Scholar
  12. Cheung, W.Y., 1967, Cyclic 3′,5′-Nucleotide Phosphodiesterase: Pronounced Stimulation by Snake Venom, Biochem. Biophys. Res. Coram., 29:478.CrossRefGoogle Scholar
  13. Cheung, W.Y., Bradham, L.S., Lynch, T.J., Lin, Y.M., and Tallant, E.A., 1975, Protein Activator of Cyclic 3′: 5′ Nucleotide Phosphodiesterase of Bovine or Rat Brain also Activates Its Adenylate Cyclase, Biochem. Biophys. Res. Comm., 66:1055.PubMedCrossRefGoogle Scholar
  14. Cheung, W.Y., 1984, Calmodulin: Its Potential Role in Cell Proliferation and Heavy Metal Toxicity, Fed. Proc., 43:2995.PubMedGoogle Scholar
  15. Chou, P.Y., and Fasman, G.D., 1978, Empirical Predictions of Protein Conformation, Ann. Rev. Biochem., 47:251.PubMedCrossRefGoogle Scholar
  16. Comte, M., Maulet, Y., and Cox, J.A., 1983, Ca++-Dependent High-Affinity Complex Formation Between Calmodulin and Melittin, Biochem. J., 209:269.PubMedGoogle Scholar
  17. Conti, M.A., and Adelstein, R.S., 1981, The Relationship Between Calmodulin and Phosphorylation of Smooth Muscle Myosin Kinase by the Catalytic Subunit of 3′: 5′ cAMP-Dependent Protein Kinase, J. Biol. Chem., 256:3178.PubMedGoogle Scholar
  18. Cox, J.A., Comte, M., Fitton, J.E., and DeGrado, W.F., 1985, The Interaction of Calmodulin with Amphilic Peptides, J. Biol. Chem., 260:2527.PubMedGoogle Scholar
  19. Crouch, T.H., and Klee, C.B., 1980, Positive Cooperative Binding of Calcium to Bovine Brain Calmodulin, Biochemistry, 19:3692.PubMedCrossRefGoogle Scholar
  20. DeGrado, W.F., Prendergast, F.G., Wolfe, H.R., and Cox, J.A., 1985, The Design, Synthesis, and Characterization of Tight-Binding Inhibitors of Calmodulin, J. Cell. Biochem., 29:83.PubMedCrossRefGoogle Scholar
  21. Edelman, A.M., Takio, K., Blumenthal, D.K., Hansen, R.S., Walsh, K.A., Titani, K., and Krebs, E.G., 1985, Characterization of the Calmodulin-Binding and Catalytic Domains in Skeletal Muscle Myosin Light Chain Kinase, J. Biol. Chem., 260:11, 275.Google Scholar
  22. Forsén, S., Vogel, H.J., and Drakenburg, T., 1986, Biophysical Studies of Calmodulin, in: “Calcium Cell Funct.”, W. Y. Cheung, ed., Academic Press, New York.Google Scholar
  23. Grand, R.J.A., Shenolikar, S., and Cohen, P., 1981, The Amino Acid Sequence of the Subunit (Calmodulin) of Rabbit Skeletal Muscle Phosphorylase Kinase, Eur. J. Biochem., 113:359.PubMedCrossRefGoogle Scholar
  24. Gysin, G. and Schwyzer, R., 1983, Head Group and Structure Specific Interactions of Eukephalins and Dynorphin with Liposomes: Investigation by Hydrophobic Photolabeling, Arch. Biochem. Biophys., 225:467.PubMedCrossRefGoogle Scholar
  25. Ikura, M., Hiraoki, T., Hikichi, K., Mikuni, T., Yazawa, M., and Yagi, K., 1983, Nuclear Magnetic Resonance Studies on Calmodulin: Calcium-Induced Conformational Change, Biochemistry, 22:5273.Google Scholar
  26. Kilhoffer, M.-C., Demaille, J.G., and Gerara, D., 1981, Tyrosine Fluorescence of Ram Testis and Octopus Calmodulin. Effects of Calcium, Magnesium, and Ionic Strength, Biochemistry, 20:4407.PubMedCrossRefGoogle Scholar
  27. Kincaid, R.L., and Vaughan, M., 1986, Direct Comparison of Ca2+ Requirements for Calmodulin Interaction with and Activation of Protein Phosphatase, Proc. Natl. Acad. Sci. U.S.A., 83:1193.PubMedCrossRefGoogle Scholar
  28. Kincaid, R.L., Vaughan, M., Osborne, J.C., Tkachuk, V.A., 1982, Ca++-dependent Interaction of 5-Dimethylamino-Naphthalene-1-Sulfonyl-Calmodulin with Cyclic Nucleotide Phosphodiesterase, Calcineurin, and Troponin I, J. Biol. Chem., 257:10638.PubMedGoogle Scholar
  29. Klee, C.B., 1977, Conformational Transition Accompanying the Binding of Ca2+ to the Protein Activator of 3′, 5′-Cyclic Adenosine Monophosphate Phosphodiesterase, Biochemistry, 16:1017.PubMedCrossRefGoogle Scholar
  30. Klee, C.B., and Vanaman, T.C., 1982, Calmodulin, Adv. Protein Chemistry, 35:213.CrossRefGoogle Scholar
  31. Krauss, E.M., and Chan, S.L., 1982, Intramolecular Hydrogen Bonding in Gramicidin S. 2. Ornithine, J. Am. Chem. Soc., 104:6953.CrossRefGoogle Scholar
  32. Lehrer, S.S., and Fasman, G.D., 1967, Ultraviolet Irradiation Effects in Poly-L-Tyrosine and Model Compounds. Identification of Bityrosine as a Photoproduct, Biochemistry, 6:757.PubMedCrossRefGoogle Scholar
  33. Levin, R.M., and Weiss, B., 1977, Binding of Trifluoperazine to the Calcium Dependent Activator of Cyclic Nucleotide Phosphodiesterase, Mol. Pharmacol., 13:690.PubMedGoogle Scholar
  34. Lukas, T.J., Burgess, W.H., Prendergast, F.G., Lau, W., and Watterson, D.M., 1986, Calmodulin Binding Domains: Characterization of a Phosphorylation and Calmodulin Binding Site from Myosin Light Chain Kinase, Biochemistry, 25:1458.PubMedCrossRefGoogle Scholar
  35. Malencik, D.A., and Anderson, S.R., 1982, Binding of Simple Peptides, Hormones, and Neurotransmitters by Calmodulin, Biochemistry, 21:3480.PubMedCrossRefGoogle Scholar
  36. Malencik, D.A., and Anderson, S.R., 1983a, High Affinity Binding of the Mastoparans by Calmodulin, Biochem. Biophys. Res. Comm., 114:50.PubMedCrossRefGoogle Scholar
  37. Malencik, D.A., and Anderson, S.R., 1983b, Binding of Hormones and Neuropeptides by Calmodulin, Biochemistry, 22:1995.PubMedCrossRefGoogle Scholar
  38. Malencik, D.A., and Anderson, S.R., 1984, Peptide Binding by Calmodulin and Its Proteolytic Fragments and by Troponin C., Biochemistry, 23:2420.PubMedCrossRefGoogle Scholar
  39. Malencik, D.A., and Anderson, S.R., 1985, Effects of Calmodulin and Related Proteins on the Hemolytic Activity of Melittin, Biochem. Biophys. Res. Comm., 130:22.PubMedCrossRefGoogle Scholar
  40. Malencik, D.A., and Anderson, S.R, 1986a, Demonstration of a Fluorometrically Distinguishable Intermediate in Calcium Binding by Calmodulin-Mastoparan Complexes, Biochem. Biophys. Res, Comm., 135:1050.CrossRefGoogle Scholar
  41. Malencik, D.A., and Anderson, S.R., 1986b, Calmodulin-Linked Equilibria in Smooth Muscle Myosin Light Chain Kinase, Biochemistry, 25:709.PubMedCrossRefGoogle Scholar
  42. Malencik, D.A., and Anderson, S.R., 1986c, Association of Calmodulin with Venom Peptides, Fed. Proc., 45:1692.Google Scholar
  43. Malencik, D.A., and Anderson, S.R., (1987) Dityrosine Formation in Calmodulin, Biochemistry, 26:695.PubMedCrossRefGoogle Scholar
  44. Malencik, D.A., and Fischer, E.H., 1982, Structure, Function, and Regulation of Phosphorylase Kinase, in: “Calcium and Cell Function,” W.Y. Cheung, ed., Academic Press, New York.Google Scholar
  45. Malencik, D.A., Anderson, S.R., Bohnert, J.L., and Shalitin, Y., 1982a, Functional Interactions Between Smooth Muscle Myosin Light Chain Kinase and Calmodulin, Biochemistry, 21:4031.PubMedCrossRefGoogle Scholar
  46. Malencik, D.A., Huang, T.-S., and Anderson, S.R., 1982b, Binding of Protein Kinase Substrates by Fluorescently Labeled Calmodulin, Biochem. Biophys. Res. Commun., 108:266.PubMedCrossRefGoogle Scholar
  47. Malencik, D.A., Scott, J., Fischer, E.H., Krebs, E.G., and Anderson, S.R., 1986, Association of Peptide Analogues of the Heat-Stable Inhibitor of cAMP-Dependent Protein Kinase with Calmodulin, Biochemistry, 25:3502.PubMedCrossRefGoogle Scholar
  48. Maulet, Y., and Cox, J.A., 1983, Structural Changes in Melittin and Calmodulin upon Complex Formation and Their Modulation by Calcium, Biochemistry, 22:5680.PubMedCrossRefGoogle Scholar
  49. McDowell, L., Sanyal, G., and Prendergast, F.G., 1985, Probable Role of Amphiphilicity in the Binding of Mastoparan by Calmodulin, Biochemistry, 24:2979.PubMedCrossRefGoogle Scholar
  50. Muchmore, D.C., Malencik, D.A., and Anderson, S.R., 1986, 1H NMR Studies of Mastoparan Binding by Calmodulin, Biochem. Biophys. Res. Comm., 137:1069.PubMedCrossRefGoogle Scholar
  51. Nakajima, T., 1986, Pharmacological Biochemistry of Vespid Venoms, in: “Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioral Aspects,” T. Piek, ed., Academic Press, New York.Google Scholar
  52. Perry, S.V., Cole, H.A., Hudlicka, O., Patchell, IV.B., and Westwood, S.A., 1984, Role of Myosin Light Chain Kinase in Muscle Contraction, Fed. Proc, 43:3015.PubMedGoogle Scholar
  53. Prozialeck, W.C., and Weiss, B., 1982, Inhibition of Calmodulin by Phenothiazines and Related Drugs: Structure-Activity Relationships, J. Pharmacol. Exp. Ther., 222:509.PubMedGoogle Scholar
  54. Richman, P.G., 1978, Conformation-Dependent Acetylation and Nitration of the Protein Activator of Cyclic Adenosine 3′, 5′-Monophosphate Phospho-diesterase. Selective Nitration of Tyrosine Residue 138, Biochemistry, 17:3001.PubMedCrossRefGoogle Scholar
  55. Richman, P.G., and Klee, C.B., 1979, Specific Perturbation by Ca2+ of Tyrosyl Residue 138 of Calmodulin, J. Biol. Chem., 254:5372.PubMedGoogle Scholar
  56. Scott, J.D., Fischer, E.H., Demaille, J.G., and Krebs, E.G., 1985, Identification of a Inhibitory Region of the Heat-Stable Protein Inhibitor of the cAMP-Dependent Protein Kinase, Proc. Natl. Acad. Sci. U.S.A., 82:4379.PubMedCrossRefGoogle Scholar
  57. Seamon, K.B., 1980, Calcium-and Magnesium-Dependent Conformational States of Calmodulin as Determined by Nuclear Magnetic Resonance, Biochemistry, 19:207.PubMedCrossRefGoogle Scholar
  58. Seeholzer, S.H., Cohn, M., Putkey, J.A., Means, A.R., and Crespi, H.L., 1986, NMR Studies of a Complex of Deuterated Calmodulin with Melittin, Proc. Natl. Acad. Sci., 83:3634.PubMedCrossRefGoogle Scholar
  59. Small, J.V., and Sobieszek, A., 1980, The Contractile Apparatus of Smooth Muscle, Int. Rev. Cytol., 64:241.PubMedCrossRefGoogle Scholar
  60. Stull, J.T., 1980, Phosphorylation of Contractile Proteins in Relation to Muscle Function, Adv. Cyclic Nucleotide Res., 13:39.PubMedGoogle Scholar
  61. Teale, F.W.J., 1960, The Ultraviolet Fluorescence of Proteins in Neutral Solution, Biochem. J., 76:381.PubMedGoogle Scholar
  62. Terwilliger, T.C., and Eisenberg, D., 1982, The Structure of Melittin. II. Interpretation of the Structure, J. Biol. Chem., 257:6016.PubMedGoogle Scholar
  63. Walsh, M., and Stevens, F.C., 1977, Chemical Modification Studies on the Ca2+-Dependent Protein Modulator of Cyclic Nucleotide Phosphodiesterase, Biochemistry, 16:2742.PubMedCrossRefGoogle Scholar
  64. Weber, G., 1961, Enumeration of Component in Complex Systems by Fluorescence Spectrophotometry, Nature (London), 190:27.PubMedCrossRefGoogle Scholar
  65. Weber, G., 1965, The Binding of Small Molecules to Proteins, in: “Molecular Biophysics”, B. Pullman and M. Weissbluth, ed., Academic Press, New York, N.Y.Google Scholar
  66. Weiss, B., Prozialeck, W., Cimino, M., Barnette, M.S., and Wallace, T.L., 1980, Pharmacological Regulation of Calmodulin, Ann. N.Y. Acad. Sci., 356:319.PubMedCrossRefGoogle Scholar
  67. Weiss, B., Prozialeck, W.C., and Wallace, T.L., 1982, Interaction of Drugs with Calmodulin: Biochemical, Pharmacological, and Clinical Implications, Biochem. Pharmacol., 31:2217.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Sonia R. Anderson
    • 1
  • Dean A. Malencik
    • 1
  1. 1.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA

Personalised recommendations