Conformational Flexibility of the Polypeptide Hormone Bombesin: Time Resolved and Static Fluorescence Studies

  • Lanfranco Masotti
  • Paolo Cavatorta
  • Arthur G. Szabo
  • Giorgio Farruggia
  • Giovanna Sartor


The three groups of peptides, the bombesins, sauvagine and the dermor-phins were first isolated from amphibian skin (Erspamer and Melchiorri, 1980a; Erspamer and Melchiorri, 1980b; Erspamer et al., 1980; Montecucchi et al., 1981; Montecucchi, 1981) and preceded the discovery of analogous peptides in mammalian tissues. Skin peptides have revealed interesting and unexpected actions both on the CNS and the endocrine system showing a wide range of activities. Their use in contributing to the understanding of the mechanisms underlying the central regulation of several visceral functions, the peripheral regulation of gut secretion and mobility, and the control of the release of hypophysary hormones is the basis for the ever growing interest in this group of peptides.


Spectral Maximum Instrument Response Function Amphibian Skin Entire Spectral Range Charge Head Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H., Chihara, K., Minamitani, N., Iwasaki, J., Chiba, T., Matsukura, S., and Fujita, T., 1981, Stimulation by Bombesin of Immunoreactive Somatostatin Release into Rat Hypophyseal Portal Blood, Endocrinology, 109:229.PubMedCrossRefGoogle Scholar
  2. Broccardo, M., Falconieri Erspamer, G., Melchiorri, P., Negri, L., and de Castiglione, R., 1975, Relative Potency of Bombesin-Like Peptides, Br. J. Pharmac., 55:221.Google Scholar
  3. Brown, M., and Vale, W., 1979, Somatostatin: Central Nervous System Actions on Glucoregulation, Endocrinology, 104:1709.PubMedCrossRefGoogle Scholar
  4. Brown, M., and Vale, W., 1981, in: Diabetes Mellitus: Diagnosis and Treatment, H. Rifin, and P. Raskin, eds., R. J. Brady Co., Bowie, MD, pp. 55-62.Google Scholar
  5. Brown, M., Rivier, J., Kobayashi, R., and Vale, W., 1978, in: Gut Hormones, S. R. Bloom, ed., Churchill Livingstone, Edinburgh, pp. 550–558.Google Scholar
  6. Brown, M., Taché, Y., Rivier, J., and Pittman, Q., 1981, Peptides and Regulation of Body Temperature, Adv. Biochem. Psychopharmacol., 94:132613c.Google Scholar
  7. Burstein, E. A., Vedenkina, N. S., and Ivkova, M. N., 1973, Fluorescence and the Location of Tryptophan Residues in Protein Molecules, Photochem. Photobiol., 18:263.PubMedCrossRefGoogle Scholar
  8. Cevc, G., Watts, A., and Marsh, D., 1981, Titration of the Phase Transition of Phosphatidylserine Bilayer Membranes. Effects of pH, Surface Electrostatics, Ion Binding and Head-Group Hydration, Biochemistry, 20:4955.PubMedCrossRefGoogle Scholar
  9. Cuttitta, F., Carney, D. N., Mulshine, J., Moody, T. W., Fedorko, J., Fischler, A., and Minna, J. D., 1985, Bombesin-like Peptides can Function as Autocrine Growth Factors in Human Small-cell Lung Cancer, Nature, 316:823.PubMedCrossRefGoogle Scholar
  10. De Caro, G., Massi, M., and Micossi, L. G., 1980, Modifications of Drinking Behaviour and of Arterial Blood Pressure Induced by Tachykinesis in Rats and Pigeons, Psychopharmacology, 68:243.PubMedCrossRefGoogle Scholar
  11. Dubrasquet, M., Rozé, C., Ling, N., and Florencio, H., 1982, Inhibition of Gastric and Pancreatic Secretions by Cerebroventricular Injections of Gastrin-Releasing Peptide and Bombesin in Rats, Regul. Peptides, 3:105.CrossRefGoogle Scholar
  12. Erspamer, V., and Melchiorri, P., 1980a, Amphibian Skin Peptides and Mammalian Neuropeptides, in: Growth Hormone and Other Biologically Active Peptides, A. Pecile, and E. E. Muller, eds., Excerpta Medica, Amsterdam, pp 185–200.Google Scholar
  13. Erspamer, V., and Melchiorri, P., 1980b, Active Polypeptides from Amphibian Skin to Gastrointestinal Tract and Brain of Mammals, Trends Pharmacol. Sci., 1:391.CrossRefGoogle Scholar
  14. Erspamer, V. and Melchiorri, P., 1983, Actions of Amphibian Skin Peptides on the Central Nervous System and the Anterior Pituitary, in: Neuroendocrine Perspectives, E. Muller, and R. M. MacLeod, eds., Vol. 2. Elsevier, New York, pp. 37–106.Google Scholar
  15. Erspamer, V., Falconieri Erspamer, G., Improta, G., Negri, L., and de Castiglione, R., 1980, Sauvagine, A New Polypeptide from Phyllomedusa sauvagei Skin, Naunyn-Schmiedeberg’s Arch. Pharmacol., 312:265.CrossRefGoogle Scholar
  16. Jahnig, F., 1983, Thermodynamics and Kinetics of Protein Incorporation into Membranes, Proc. Natl. Acad. Sci. USA, 80:3691.PubMedCrossRefGoogle Scholar
  17. Knutson, J. R., Wallbridge, D. G., and Brand, L., 1982, Decay-Associated Fluorescence Spectra and the Heterogeneous Emission of Alcohol Dehydrogenase, Biochemistry, 21:4671.PubMedCrossRefGoogle Scholar
  18. Kyte, J. and Doolittle, R. F., 1982, A Simple Method for Displaying the Hydropathic Character of a Protein, J. Mol. Biol., 157:105.PubMedCrossRefGoogle Scholar
  19. MacKinnon, A. E., Szabo, A. G., and Miller, D. R., 1977, The Deconvolution of Photoluminescence Data, J. Phys. Chem., 81:1564.CrossRefGoogle Scholar
  20. Martin, C. F., and Gibbs, J., 1980, Bombesin Elicits Satiety in Sham Feeding Rat, Peptides, 1:131.PubMedCrossRefGoogle Scholar
  21. Montecucchi, P. C., de Castiglione, R., Piani, S., Gozzini, L., and Erspamer, V., 1981, Identification of Dermorphin and Hyp6-Dermorphin in Skin Extracts of the Brazilian Frog Phyllomedusa Rhodei, Int. J. Peptide Protein Res., 17:316.CrossRefGoogle Scholar
  22. Montecucchi, P. C., de Castiglione, R., Piani, S., Gozzini, L., and Erspamer, V., 1981, Amino Acid Composition and Sequence of Dermorphin, A Novel Opiate-Like Peptide from the Skin of Phyllomedusa Sauvagei, Int. J. Peptide Protein Res., 17:275.CrossRefGoogle Scholar
  23. Moody, T. W., Pert, C. B., Rivier, J., and Brown, M. R., 1978, Bombesin: Specific Binding to Rat Brain Membranes, Proc. Natl. Acad. Sci. USA, 75:5372.PubMedCrossRefGoogle Scholar
  24. Rivier, C., Rivier, J., and Vale, W., 1978, The Effect of Bombesin and Related Peptides on Prolactin and Growth Hormone Secretion in the Rat, Endocrinology, 102:519.PubMedCrossRefGoogle Scholar
  25. Szabo, A. G., and Rayner, D. M., Fluorescence Decay of Tryptophan Conformers in Aqueous Solution, 1980, J. Am. Chem. Soc., 102:554.CrossRefGoogle Scholar
  26. Westendorf, J. M., and Schombrunn, A., 1982, Bombesin Stimulates Prolactin and Growth Hormone Release by Pituitary Cells in Culture, Endocrinology, 110:352.PubMedCrossRefGoogle Scholar
  27. Zuker, M., Szabo, A. G., Bramall, L., Krajcarski, D. T., and Selinger, B., 1985, Delta Function Convolution Method (DFCM) for Fluorescence Decay Experiments, Rev. Sci. Instrum., 56:14.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Lanfranco Masotti
    • 1
  • Paolo Cavatorta
    • 2
  • Arthur G. Szabo
    • 3
  • Giorgio Farruggia
    • 1
  • Giovanna Sartor
    • 1
  1. 1.Institute of Biological ChemistryUniversity ParmaParmaItaly
  2. 2.Department of Biophysics-GNCBUniversity ParmaParmaItaly
  3. 3.Division of Biological SciencesNational Research Council of CanadaOttawaCanada

Personalised recommendations