Mixing Properties and Resonances in Chaotic Dynamical Systems

  • Stefano Isola


We are interested here in discussing the mixing properties of chaotic time evolution, namely the rate at which a chaotic dynamical system looses memory about its past history.


Correlation Function Periodic Orbit Strange Attractor Characteristic Exponent Invariant Probability Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. -P. Eckmann and D. Ruelle: Rev. Mod. Phys. 53, 643 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    D. Ruelle: Chaotic evolutions and strange attractors, Notes prepared by S. Isola from the “Lezioni Lincee” (Rome, 1987), Cambridge University Press, Cambridge UK, 1988Google Scholar
  3. 3.
    D. Ruelle: Phys. Rev. Lett. 56, 405 (1985);MathSciNetADSCrossRefGoogle Scholar
  4. 3a.
    D. Ruelle: J. Stat. Phys. 44, 281 (1986);MathSciNetADSCrossRefMATHGoogle Scholar
  5. 3b.
    D. Ruelle: J. Differ. Geom. 99 (1987);Google Scholar
  6. 3c.
    D. Ruelle: J. Differ. Geom. 117 (1987)Google Scholar
  7. 4.
    M. Pollicott: Invent. Math. 81, 413 (1985)MathSciNetADSCrossRefMATHGoogle Scholar
  8. 5.
    S. Isola: Commun. Math. Phys. 116, 343 (1988)MathSciNetADSCrossRefMATHGoogle Scholar
  9. 6.
    V. Baladi, J. -P. Eckmann and D. Ruelle: Resonances for intermittent systems, Preprint (1988), to appear in Nonlineaxity.Google Scholar
  10. 7.
    Y. Pomeau and P. Manneville: Comm. Math. Phys. 74, 189 (1980)MathSciNetADSCrossRefGoogle Scholar
  11. 8.
    M. Hénon: Commun. Math. Phys. 50, 69, (1976)ADSCrossRefMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Stefano Isola
    • 1
  1. 1.Dipartimento di FisicaUniversitá di FirenzeFirenzeItaly

Personalised recommendations