Advertisement

Stochastic Bifurcations in a Generic Dynamical System: A Qualitative Analysis

  • F. J. de la Rubia
  • W. Kliemann

Abstract

One of the main problems in the analysis of nonlinear dynamical systems is the study of the number and stability of the stationary solutions. In a first approach one assumes deterministic conditions, such that all the parameters involved in the problem have fixed values. If this is the case, bifurcation theory1–3 provides the necessary mathematical tools to handle the problem. In many practical situations, however, the restriction of constant parameters is difficult to maintain, and one would like to be able to extend the precise results of bifurcation theory to, for instance, the case in which the bifurcation parameter fluctuates around a well defined mean value.

Keywords

Bifurcation Diagram Stochastic Differential Equation Bifurcation Point Stochastic System Bifurcation Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields”, Springer-Verlag, New York(1983).Google Scholar
  2. 2.
    M. Golubitsky and D.G. Schaeffer, “Singularities and Groups in Bifurcation Theory, Vol.1”, Springer-Verlag, New York(1985).Google Scholar
  3. 3.
    D.W. Jordan and P. Smith, “Nonlinear Ordinary Differential Equations (second edition)”, Oxford University Press, Oxford(1987).Google Scholar
  4. 4.
    E. Knobloch and K.A. Wiesenfeld, Bifurcations in Fluctuating Systems:The Center-Manifold Approach, J.Stat.Phys. 33:611 (1983).MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    M. Lucke and F. Schank, Response to Parametric Modulation near an Instability, Phys.Rev.Lett. 54:1465 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    L. Arnold, Lyapunov Exponents of Nonlinear Stochastic Systems, in: “Nonlinear Stochastic Dynamic Engineering Systems”, G.I. Schueller and F. Ziegler,eds., Springer-Verlag, Berlin (1987).Google Scholar
  7. 7.
    C. Meunier and A.D. Verga, Noise and Bifurcations, J.Stat.Phys. 50:345 (1988).MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    W. Kliemann, Qualitative Theory of Stochastic Dynamical Systems: Aplications to Life Sciences, BulLMath.Biology 45:483 (1983).MathSciNetMATHGoogle Scholar
  9. 9.
    L. Arnold and W. Kliemann, Qualitative Theory of Stochastic Systems, in: ‘Probabilistic Analysis and Related Topics, Vol.3”, A.T. Barucha-Reid, ed., Academic Press, New York(1983).Google Scholar
  10. 10.
    L. Arnold, “Stochastic Differential Equations: Theory and Applications”, Wiley, New York(1974).MATHGoogle Scholar
  11. 11.
    I.I. Gihman and A.V. Skorohod, “Stochastic Differential Equations”, Springer-Verlag, Berlin(1972).CrossRefMATHGoogle Scholar
  12. 12.
    W. Rumelin, Numerical Treatment of Stochastic Differential Equations, SIAM J.Numer.Anal. 19:604(1982).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J.M. Sancho,M. San Miguel,S.L. Katz and J.D. Gunton, Analytical and Numerical Studies of Multiplicative Noise, Phys.Rev. A26: 1589 (1982).ADSGoogle Scholar
  14. 14.
    F.J.de la Rubia and M.G. Velarde, White versus Non-White Stochastic Environment of Intrinsically Stochastic Systems: A Computational Approach to the Evolutionary Problem, J.Non-Equilib.Thermodyn. 10:219 (1985).ADSMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • F. J. de la Rubia
    • 1
  • W. Kliemann
    • 2
  1. 1.Department of Chemistry, B-040 and Institute for Nonlinear ScienceUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations