The Role of Fluctuations in Nuclear Reactor Transients

  • M. A. Rodríguez
  • A. Díaz-Guilera


Stationary fluctuations in stable physical systems scale as the inverse of volume, hence they are so small that in most cases can be neglected. In nonstationary stuations there are different behaviours depending on the nature of the transient and also on the initial conditions. In the following we will refer as normal the cases in which fluctuations scale as the inverse of volume and anomalous all the other cases.


Master Equation Langevin Equation Ananalous Fluctuation Neutron Density Unstable Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Suzuki, “Order and Fluctuations in Equilibrium and Non-equilibrium Statistical Mechanics”, Edited by Nicolis G., Dewel G, and Turner J.W., Wiley, New York (1981).Google Scholar
  2. 2.
    K. Kawasaki, M.C. Yalabik and J.D. Gunton, Phys. Rev. A 17: 455 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    J. Gani, “Stochastic Model for Bacteriophage”, Methuen Rev. Series, 1965.Google Scholar
  4. 4.
    S. Kabashima, M. Itsumi, T. Kawakubo, T. Nagashima, J. Phys. Soc. Jap. 39: 1183 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    F. de Pasquale, P. Tartaglia, P. Tombesi, Il Nuovo Cimento, 69B: 228 (1982).ADSGoogle Scholar
  6. 6.
    F.T. Arecchi, U. Degiorgio and B. Querzola, Phys. Rev. Lett. 19: 1168 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    T.F. Wimett et al., Nucl. Sci. Engng., 8:691 (1960).Google Scholar
  8. 8.
    M.M.R. Williams, “Random Processes in Nuclear Reactors”. Pergamon Press, Oxford (1974).Google Scholar
  9. 9.
    F. de Pasquale, J.M. Sancho et al., Phys. Rev. Lett 56:2473 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Rodriguez, A. Díaz-Guilera and J.M. Sancho, Ann. nucl. Energy 13:49 (1986).CrossRefGoogle Scholar
  11. 11.
    N.G. Van Kampen, “Stochastic Processes in Physics and Chemistry”, North-Holland, Amsterdam (1983).Google Scholar
  12. 12.
    N. Morishima, J. nucl. Sci. Technol., 10:29 (1973).CrossRefGoogle Scholar
  13. 13.
    M. Matthey, Ann. nucl. Energy 6: 345 (1979).CrossRefGoogle Scholar
  14. 14.
    A.M.S. Tremblay, M. Arai and E.D. Siggia, Phys. Rev. A23:1451 (1981).ADSGoogle Scholar
  15. 15.
    F. de Pasquale, P. Tartaglia and P. Tombesi, Phys. Lett. 78A:129 (1980).ADSGoogle Scholar
  16. 16.
    A. Díaz-Guilera, J.M. Sancho and M.A. Rodriguez, Ann. nucl. Energy 12:501 (1985).CrossRefGoogle Scholar
  17. 17.
    A. Díaz-Guilera, M.A. Rodriguez and J.M. Sancho, Ann. nucl. Energy 12:441 (1985).CrossRefGoogle Scholar
  18. 18.
    E.R. Quabili, Ann. nucl. Energy 7:185 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. A. Rodríguez
    • 1
  • A. Díaz-Guilera
    • 2
  1. 1.Dpto. de Física ModernaUniv. de CantabriaSantanderSpain
  2. 2.Dpto. de FísicaUniv. Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations