Advertisement

Nonlinear Stochastic Theory and Identification of Nonlinearity in Nuclear Reactors

  • H. Konno

Abstract

Presented are a nonlinear stochastic theory and a method for the identification of non-linearity using empirical models in nuclear systems. First I describe a stochastic dynamical power reactor model. Here I proposed are a method (i) of identifying BWR stability with the use of the covariance and the irreversible circulation of fluctuation, and (ii) a method of inferring reactor parameters such as feedback coefficients. Second, the identification theory of 2D random vibration using of a generalized stochastic process and a fluctuation-dissipation theorem is described. Third, the feasibility for the identification of fluid is also demonstrated.

Keywords

Power Spectral Density Nuclear System Power Oscillation Reductive Perturbation Method Neutron Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.M.R. Williams, “Random Processes in Nuclear Reactors”, Pergamon, Oxford (1974).Google Scholar
  2. [2]
    J. Thie, “Power Reactor Noise”, American Nuclear Society, La Grange Park (1981).Google Scholar
  3. [3]
    K. Saito, Ann. Nucl. Energy 1: p31–48 (1974).Google Scholar
  4. [3a]
    K. Saito, Ann. Nucl. Energy 1: 107–128 (1974).Google Scholar
  5. [3b]
    K. Saito, Ann. Nucl. Energy 1: 209–221 (1974).Google Scholar
  6. [4]
    USSR State Committee on the Utilization of Atomic Energy; The Accident at Chernobyl Nuclear Power Plant and Its Consequences (1986).Google Scholar
  7. [5]
    H. Mori, T. Morita and K. T. Mashiyama, Progr.Theor.Phys. 63, 1865 (1980).MathSciNetADSCrossRefMATHGoogle Scholar
  8. [5a]
    H. Mori, T. Morita and K. T. Mashiyama, Progr.Theor.Phys. 64: 500 (1980).MathSciNetADSCrossRefMATHGoogle Scholar
  9. [6]
    H. Haken,“Synergetics”, Springer, Berlin (1977).CrossRefGoogle Scholar
  10. [7]
    VanKampen, Can J. Phys. 39: 551 (1961).ADSCrossRefMATHGoogle Scholar
  11. [8]
    R. Kubo, K. Kitahara and K. Matsuo, J. Stat. Phys. 9: 51 (1973).ADSCrossRefGoogle Scholar
  12. [9]
    T. Taniuch and H. Washimi, Phys. Rev. Lett. 21: 209 (1968).ADSCrossRefGoogle Scholar
  13. [10]
    K. Saito, “Non-linear Nuclear Stochastic Theory” in: Advances in Nuclear Science and Technology, J. Lewins and M. Becker ed., Plenum Press, New York (1983).Google Scholar
  14. [11]
    M. Ash, “Nuclear Reactor Kinetics”, 2nd Ed., McGraw-Hill, New York (1979).Google Scholar
  15. [12]
    e.g., K. Fukunishi, Nucl. Sci. Engng 67: 298 (1978)Google Scholar
  16. [12a]
    Y. Andoh et al., J. Nucl. Sci. Technol. 20: 769 (1983).CrossRefGoogle Scholar
  17. [13]
    D.N. Fry, R.C. Kryter and J.C. Robinson, ORNL-TM-4570 (1974).Google Scholar
  18. [14]
    T. Fukano and S. Osaka, J. Atomic. Energy Society of Japan 27: 1147 (1985) (in Japanese).CrossRefGoogle Scholar
  19. [15]
    E. Turkan (1984) Summary of SMORN-IV Benchmark Test Problem.Google Scholar
  20. [16]
    Dentico G., Pacilio V., Paparia B. and Tosi V., Progr. Nucl. Energy 9: 255 (1982).CrossRefGoogle Scholar
  21. [17]
    H. Konno, Ann. Nucl. Energy 13: 185 (1986).ADSCrossRefGoogle Scholar
  22. [18]
    H. Konno, Progr. Nucl. Energy 21 (1988).Google Scholar
  23. [19]
    M. Suzuki, Progr. Theor. Phys. 67: 1756 (1982)ADSCrossRefMATHGoogle Scholar
  24. [19]
    M. Suzuki, Progr. Theor. Phys. 68: 98 (1982).ADSCrossRefMATHGoogle Scholar
  25. [20]
    Y. Okabe, Commn. Math. Phys. 98: 449 (1985).MathSciNetADSCrossRefMATHGoogle Scholar
  26. [21]
    H. Konno, J. Phys. Soc. Japn. 57: 777 (1988).MathSciNetADSCrossRefGoogle Scholar
  27. [22]
    H. Konno, Progr. Nucl. Energy 15: 209 (1985).CrossRefGoogle Scholar
  28. [23]
    J. M. Leuba et al., Nucl. Sci. Engng. 93: 111 (1986).Google Scholar
  29. [23a]
    J. M. Leuba et al., Nucl. Sci. Engng. 93: 124 (1986).Google Scholar
  30. [24]
    K. Tomita and H. Tomita, Progr. Theor. Phys. 51: 1731 (1974).ADSCrossRefGoogle Scholar
  31. [25]
    K. Kishida et al., J. Nucl. Sei. Technol. 13: 161 (1976).CrossRefGoogle Scholar
  32. [26]
    K. Kishida et al., Progr. Nucl. Energy 1: 247 (1977).CrossRefGoogle Scholar
  33. [27]
    K. Hayashi et al., JAERI-M 84–056; 84–137 (1986) and private communications.Google Scholar
  34. [28]
    B. G. Bergdhal et al., BWR-stablilty Investigation at FORSMAK 1, STUDSVIK/NI-88/12.Google Scholar
  35. [29]
    R. Oguma et al., Investigation of BWR stability in FORSMAK 2 Based on Multivariable Noise Analysis, STUDSVIK/NI-88/3.Google Scholar
  36. [30]
    H. Konno, Ann. Nucl. Energy 10: 451 (1983).CrossRefGoogle Scholar
  37. [31]
    H. Konno, Ann. Nucl. Energy 11: 405 (1984).CrossRefGoogle Scholar
  38. [32]
    M. Suzuki, J. Stat. Phys. 49: 977 (1988).ADSCrossRefGoogle Scholar
  39. [33]
    Karmeshu, Ann. Nucl. Energy 8: 141 (1981).CrossRefGoogle Scholar
  40. [34]
    M.M. R. Williams, Ann. Nucl. Energy 10: 51 (1983).CrossRefGoogle Scholar
  41. [35]
    O. Sako, J. Nucl. Sci. & Technol. 17: 323 (1980).CrossRefGoogle Scholar
  42. [36]
    H. Konno and T. Tanaka (1988) (unpublished).Google Scholar
  43. [37]
    H. Konno and K. Saito, Ann. Nucl. Energy 11: 1 (1984).CrossRefGoogle Scholar
  44. [38]
    J. A. Thie, Nucl. Technol. 45: 4 (1979).Google Scholar
  45. [39]
    P. Liewers, W. Schmitt, P. Schumann and F.P. Weiss, Progr. Nucl. Energy 21: (1988).Google Scholar
  46. [40]
    E. Turkcan, Porgr. Nucl. Energy 9: 437 (1981).CrossRefGoogle Scholar
  47. [41]
    R. Oguma and E. Turkcan, Progr. Nucl. Energy 15: 863 (1985).CrossRefGoogle Scholar
  48. [42]
    U. Frisch and R. Morf, Phys. Rev. A23: 2673 (1981).ADSGoogle Scholar
  49. [43]
    U. Frisch, Physica Scripta T9: 137 (1985).ADSCrossRefGoogle Scholar
  50. [44]
    H. Mori et al., Physica Scripta T9: 27 (1985).ADSCrossRefGoogle Scholar
  51. [45]
    H. Konno, H. Soneda, T. Tanaka and K. Hayashi, Ann. Nucl. Energy 18: (1988).Google Scholar
  52. [46]
    A. Schenzle and H. Brand, Phys. Rev. A20: 1628 (1979).ADSGoogle Scholar
  53. [47]
    R. Kubo, J. Math. Phys. 4: 174 (1963).MathSciNetADSCrossRefMATHGoogle Scholar
  54. [48]
    L. van Wijngaarden, Ann. Rev. Fluid. Mech. 4: 369 (1972).ADSCrossRefGoogle Scholar
  55. [49]
    H. Konno, J. Phys. Soc. Japn 57: 1163 (1988).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H. Konno
    • 1
  1. 1.Institute of Materials ScienceUniversity of TsukubaTsukuba, Ibaraki, 305Japan

Personalised recommendations