Metal-Promoted Hydrolysis of Polymeric Chelating Agents: Chelators on Demand

  • C. G. Pitt
  • Z.-W. Gu
  • J.-H. Zhu
  • Y. T. Bao
Part of the Polymer Science and Technology book series (PST, volume 38)


The feasibility of designing polymer-chelator conjugates from which release of the chelator is triggered reversibly by the appearance of the target (toxic) metal in the circulatory system was tested by synthesis and measurement of the rates of metal-catalysis hydrolysis of the ester of poly(vinyl alcohol) and quinaldic acid at pH 7.5. Hydrolysis in 50% aqueous ethanol solution in the presence of the four metals, Cu(II), Ni(II), Co(II) and Zn(II) at pH 7.5 was first order, with half lives of 67, 71, 172 and 476 min., respectively. The rate of hydrolysis in the absence of metals was not measurable. A double reciprocal plot of kobs vs. [M] for Ni(II) exhibited the expected linearity. For films of the ester, the deviation from first order kinetics was consistent with a contributing diffusion process.


Vinyl Alcohol Double Reciprocal Plot Aqueous Ethanol Solution Amino Acid Ester Polymeric Metal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Catsch & A. E. Marmuth-Hoene, “The Chelation of Heavy Metals”, W. G. Levine, Ed., Pergamon Press, Oxford, 1979, p 107–224.Google Scholar
  2. 2.
    A. E. Martell, Ed., “Inorganic Chemistry in Biology and Medicine”, ACS Symposium Series, No. 140, American Chemical Society, Washington, DC, 1980.Google Scholar
  3. 3.
    C. G. Pitt & A. E. Martell in: “Inorganic Chemistry in Biology and Medicine”, A. E. Martell, Ed., ACS Symposium Series, No 140, Washington, DC, 1980, p. 279–312.CrossRefGoogle Scholar
  4. 4.
    G. Peters, H. Keberle, K. Schmid & H. Brunner, Biochem. Pharm., 15, 93 (1966).CrossRefGoogle Scholar
  5. 5.
    R. D. Propper & N. G. Nathan in: Chronic Iron Overload , E. C. Zaino & R. H. Roberts, Eds., Stratton Int. Medical Book Corporation, New York, 1977, p 17–36.Google Scholar
  6. 6.
    C. G. Pitt, Z-W. Gu, R. W. Hendren, J. Thompson & M. C. Wani, J. Controlled Release, 2, 363 (1985).CrossRefGoogle Scholar
  7. 7.
    D. A. Buckingham in: “Biological Aspects of Inorganic Chemistry”, A. W. Addison, W. R. Cullen, D. Dolphin & B. R. James, Eds., Wiley-Interscience, New York, 1976, p. 141–196.Google Scholar
  8. 8.
    R. W. Hay and C. R. Clark, J. Chem. Soc., 1977, 1993.Google Scholar
  9. 9.
    C. G. Swain, M. S. Swain & L. F. Berg, J. Chem. Inf. Comput Sci., 20, 47 (1980).CrossRefGoogle Scholar
  10. 10.
    D. W. Marquard, J. Soc. Ind. Appl. Math., 11, 431 (1963): IBM Share Program No. 3094.CrossRefGoogle Scholar
  11. 11.
    R. W. Hay & C. R. Clark, J. Chem. Soc., 1977, 1866.Google Scholar
  12. 12.
    S. Strickland, G. Palmer & V. Massey, J. Biol. Chem., 250, 4048 (1975).Google Scholar
  13. 13.
    C. E. Reese & H. Eyring. Textile Res. J., 20, 743 (1950).CrossRefGoogle Scholar
  14. 14.
    C. Crank, “The Mathematics of Diffusion”, Oxford University Press, Oxford, 1956, p 42–61.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • C. G. Pitt
    • 1
  • Z.-W. Gu
    • 1
  • J.-H. Zhu
    • 1
  • Y. T. Bao
    • 1
  1. 1.Research Triangle InstituteResearch Triangle ParkUSA

Personalised recommendations