Urokinase:AT-III:PGE1:Methyl Dopa Complex Immobilized Albumin-Blended Chitosan Membranes — Antithrombotic and Permeability Properties

  • Thomas Chandy
  • Chandra P. Sharma
Part of the Polymer Science and Technology book series (PST, volume 38)


The search for a nonthrombogenic membrane having high permselectivity for hemodialysis applications continues to be a field of extensive investigation. A series of membranes was prepared by air drying the thin layers of albumin:chitosan [a (1→4)-2-amino-2-deoxy-β-D-glucan] blends in various proportions. The albumin blended chitosan membranes showed high permeability properties for low molecular weight compounds. Complexes having fibrinolytic, anticoagulant and antiplatelet activities were prepared by repeated modification of urokinase with antithrombin-III, and methyl dopa:PGE1. A nonthrombogenic albumin:chitosan blended membrane was derived by immobilizing this bioactive complex on them, via the carbodiimide functional moiety. This novel membrane demonstrated good permeability properties for small molecules and showed a dramatic reduction in platelet attachment. Such membranes that have drug complexes immobilized on them may have wider applications in the hemodialysis of patients with hypertension, as well as providing improved permeability and blood compatibility.


Uric Acid Methyl Dopa Blood Compatibility Permeability Property Chitosan Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Hudson & L. A. Cuculo, J. Macromol. Sci., Revs. Macromol. Sci., C18, 1 (1980).CrossRefGoogle Scholar
  2. 2.
    S. Hirano, Agric. Biol. Chem., 42, 1939 (1978).CrossRefGoogle Scholar
  3. 3.
    S. Hirano, K. Tobetto, M. Hasegawa & N. Matsuda, J. Biomed. Mater. Res., 14, 477 (1980).CrossRefGoogle Scholar
  4. 4.
    A. V. Maksimenko & V. P. Torchilin, Throm. Res., 38, 277(1985).Google Scholar
  5. 5.
    C. P. Sharma & T. Chandy, J. Biomed. Mater. Res., submitted.Google Scholar
  6. 6.
    C. P. Sharma & T. Chandy, Trans. Soc. Biomaterials, 10, 31 (1987).Google Scholar
  7. 7.
    T. Chandy & C. P. Sharma, Throm. Res., 41, 9 (1986).CrossRefGoogle Scholar
  8. 8.
    E. S. Lee & S. W. Kim, Trans. Am. Soc. Artificial Organs, XXV, 124 (1979).CrossRefGoogle Scholar
  9. 9.
    G. B. Latting, Am J. Clin. Path., 41, 565 (1964).Google Scholar
  10. 10.
    P. B. Hawk, “Physiological Chemistry”, 14th Ed., B. L. Oser. Ed., McGraw Hill, New York, 1965.Google Scholar
  11. 11.
    J. D. Bauer, P. G. Ackermann & G. Toro, “Clinical Laboratory Methods”, 8th Ed., C. V. Mosby Co., St. Louis, 1974, p. 384.Google Scholar
  12. 12.
    ASTM-D 638–80, “Annual Book of ASTM Standards”, 35, 250 (1982).Google Scholar
  13. 13.
    M. A. Packham, G. Evans, M. P. Glynn & I. F. Mustard, J. Lab. Clin. Med., 73, 686 (1969).Google Scholar
  14. 14.
    H. Kambic, G. Picha, R. Kiraly, I. Koshino & Y. Nose, Trans. Am. Soc. Artificial Organs, XXII, 664 (1976).Google Scholar
  15. 15.
    T. Kon, G. L. Mrava, D. Webber & Y. Nose, J. Biomed. Mater. Res., 4, 13 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Thomas Chandy
    • 1
  • Chandra P. Sharma
    • 1
  1. 1.Division of Biosurface TechnologySree Chitra Tirunal Institute for Medical Sciences and Technology PoojapuraTrivandrumIndia

Personalised recommendations