Advertisement

Surface Treatment of PMMA with Polyvinylpyrrolidone and a Titanium Compound and Its Effect on Blood Compatibility

  • Debra A. Wrobieski
  • David L. Cash
  • Norman Elliott
  • Ram Kossowsky
  • Jerry E. London
  • Bruce E. Lehnert
  • David V. Duchane
Part of the Polymer Science and Technology book series (PST, volume 38)

Abstract

The surfaces of poly(methyl methacrylate) (PMMA) have been modified through a chemical infusion process by treatment of the sample with a solution containing varying amounts of titanium (IV) isopropoxide and poly (vinylpyrrolidone) (PVP). The resulting sample is modified in the outermost 150–325 micron region while the underlying polymeric material is unchanged. The chemical infusion process, a solvent based surface modification technique, is described in detail along with a study correlating treatment conditions with penetration depth. The treated samples were characterized by scanning electron microscopy, optical microscopy, and neutron activation analysis. These samples were evaluated for blood compatibility using two biological assays: (1) an adherence assay in which the adherence of human polymorphonuclear leukocytes to the samples was determined, and (2) a dynamic hemolysis assay using rat blood erythrocytes to determine the hemolytic activity of the samples. Based on the results of these assays, the PMMA samples treated with PVP alone resulted in an improvement in reactivity with the blood cells in a manner comparable to TecoflexR, a commercially available polymer with relatively benign characteristics.

Keywords

Neutron Activation Analysis Methyl Methacrylate Hemolytic Activity Blood Compatibility Titanium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Vroman, A. L. Adams, M. Klings, G. C. Fischer, P. C. Munoz & R. P. Solensky, Ann. N. Y. Acad. Sci., 283, 65 (1977).CrossRefGoogle Scholar
  2. 2.
    Guidlines for Blood-Material Interactions, U. S. Department of Health and Human Services, N.H.L.B.I., N.I.H., 1985, No. 85–2185/September.Google Scholar
  3. 3.
    M. Szycher in: Biocompatible Polymers, Metals, and Composites, M. Szycher, Ed., Technomic Publishing Co. Inc., Lancaster, PA, 1983, Chapter 1, p. 1.Google Scholar
  4. 4.
    A. S. Hoffman in: Biomaterials: Interfacial Phenomena and Applications, S. L. Cooper & N. A. Peppas, Eds., ACS Adv. Chem. Ser. No. 199, 1982, Chapter 1, p. 3.CrossRefGoogle Scholar
  5. 5.
    A. S. Hoffman in: Polymeric Materials and Artificial Organs, C. G. Gebelein, Ed., ACS Symp. No. 256, Amer. Chem. Soc., Washington, D.C., 1984, p. 13.CrossRefGoogle Scholar
  6. 6.
    M. F. A. Goosen & M. V. Sefton in: Biomaterials: Interfacial Phenomena and Applications, S. L. Cooper & N. A. Peppas, Eds., ACS Adv. Chem. Ser. No. 199, 1982, Chapter 11, p. 147.CrossRefGoogle Scholar
  7. 7.
    H. E. Kambic, S. Murabayashi & Y. Nose in: Biocompatible Polymers, Metals, and Composites, M. Szycher, Ed., Technomic Publishing Co. Inc., Lancaster, PA, 1983, Chapter 8, p. 179.Google Scholar
  8. 8.
    C. G. Gebelein & D. Murphy, Polym. Mater. Sci. Eng., 53, 415 (1985).Google Scholar
  9. 9.
    D. V. Duchane, J. Vac. Sci. Tech., 18, 1183 (1981).Google Scholar
  10. 10.
    D. V. Duchane, U. S. Patent No. 4, 376, 751 (1983).Google Scholar
  11. 11.
    J. L. Azorlosa & A. J. Martinelli in: Water-Soluble Resins, R. L. Davidson & M. Sittig, Eds., Van Nostrand Reinhold Co., New York, 1968, Chapter 7, p. 131.Google Scholar
  12. 12.
    Encycl. Polymer Science & Tech., Vol. 14, John Wiley & Sons, New York, 1971, p. 239.Google Scholar
  13. 13.
    L. W. Burnette, Proc. Sci. Sect. T. G. S., 38, 1 (1962).Google Scholar
  14. 14.
    P. G. Laing, A. B. Ferguson & E. S. Hodge, J. Biomed. Mat. Res., 1, 135 (1967).CrossRefGoogle Scholar
  15. 15.
    P. J. Aragon & S. F. Hulbert, J. Biomed. Mat. Res., 6, 155 (1972).Google Scholar
  16. 16.
    J. Black, Biological Performance of Materials. Fundamentals of Biocompatibility, Dekker, New York, 1981.Google Scholar
  17. 17.
    D. F. Williams, Biocompatibility of Implant Materials, CRC Press, Boca Raton, FA, 1981.Google Scholar
  18. 18.
    H. L. Milligan, W. T. Cleminshaw & K. W. Edmark, J. Biomed. Mat. Res., 7, 445 (1973).CrossRefGoogle Scholar
  19. 19.
    S. D. Bruck, Ann. N. Y. Acad. Sci., 1976, 332.Google Scholar
  20. 20.
    B. E. Lehnert & J. Ferin, J. Reticuloendothel. Soc., 33, 293 (1983).Google Scholar
  21. 21.
    J. S. Harington, K. Miller & G. Macnab, Environ. Res., 4, 95 (1971).CrossRefGoogle Scholar
  22. 22.
    R. P. Nolan, A. M. Langer & J. S. Harington, Environ. Res., 26, 503 (1981).CrossRefGoogle Scholar
  23. 23.
    F. A. Cotton & G. Wilkinson, Advanced Inorganic Chemistry, John Wiley & Sons, New York, 1980, Chapter 21, p. 694.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Debra A. Wrobieski
    • 1
  • David L. Cash
    • 1
  • Norman Elliott
    • 1
  • Ram Kossowsky
    • 3
  • Jerry E. London
    • 2
  • Bruce E. Lehnert
    • 2
  • David V. Duchane
    • 1
  1. 1.Material and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Life Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.State CollegePenn State universityUSA

Personalised recommendations