Advertisement

Graft Copolymers of Amino Acids onto Natural and Synthetic Polymers

  • William H. Daly
  • Soo Lee
Part of the Polymer Science and Technology book series (PST, volume 38)

Abstract

By analogy with natural chitin-protein complexes, grafting of amino acids to natural polymers produces biodegradable biocomposites. The literature on grafting amino acid N-carboxyanhydrides (NCAs) to proteins, natural polymers and vinyl polymers is reviewed. Macroinitiators with primary amino substituents were synthesized by one of the following techniques: (a) cyanoethylation of cellulose followed by reduction to produce aminopropylcellulose [1], and (b) phthalimidation followed by hydrazinolysis to yield amino-methyl poly(arylene ether sulfone) [3]. Heterogeneous grafting of γ-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA) [8] to polymer [1] resulted in non-random distribution of amino acid residues; a-helical conformations were detected at low BLG-NCA/NH2 ratios (<5 AA). Using molar ratios ranging from 1 to 100 of [8] relative to the amine concentration, grafting to polymer [3] was effected in anhydrous THF at room temperature under homogeneous conditions; high grafting efficiencies (>80%) were achieved. Polypeptides grafted to polymer [3] appeared to adopt the expected conformation for the chain length predicted by the BLG-NCA/NH2 ratio. The benzyl ester functions on the BLG grafts are subject to direct modification with amine nucleophiles; studies with butylamine correlate reaction conditions with extent of ester vs. peptide cleavage. In the presence of 1-hydroxybenzotriazole, aminolysis of the ester is favored and conversions to γ-amides up to 75% are achieved.

Keywords

Graft Copolymer Benzyl Ester Butyl Methacrylate Ether Sulfone Peptide Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Poulicek, M. F. Voss-Foucart & Ch. Jeuniaux in: “Chitin in Nature and Technology”, R. Muzzarelli, Ch. Jeuniaux, & G.W. Gooday, Eds., Plenum Publ. Corp., New York, 1986; pp. 7–13.CrossRefGoogle Scholar
  2. 2.
    C. Ramakrishnan & N. Prasad, Biochem. Biophys. Acta, 261, 123 (1972).CrossRefGoogle Scholar
  3. 3.
    H. Bittiger, E. Husemann, & A. Kuppel, J. Polym. Sci., Part C, 28, 45 (1969).Google Scholar
  4. 4.
    N. E. Dweltz, J. R. Colvin, & A. G. Mclnnes, Can. J. Chem., 46, 1513 (1968).CrossRefGoogle Scholar
  5. 5.
    S. Weiner, Amer. Zool., 24, 945 (1984).Google Scholar
  6. 6.
    G. Goffinet, Ch. Gregoire & M. F. Voss-Foucart, Arch. Internat. Physiol. Biochem., 85, 849 (1977).CrossRefGoogle Scholar
  7. 7.
    H. Nakanara, G. Bevelander & M. Kakei, Venus, 39, 205 (1982).Google Scholar
  8. 8.
    R. H. Hackman, Austr. J. Biol. Sci., 8, 83 (1955);Google Scholar
  9. 8a.
    R. H. Hackman, Austr. J. Biol. Sci., 13, 568 (1960).Google Scholar
  10. 9.
    C. J. Brine & P. R. Austin, Comp. Biochem. Physiol., 70B, 173 (1981).Google Scholar
  11. 10.
    A. Gottschalk, W.H. Murphy, & E.R.B. Graham, Nature, 194, 1051 (1962).CrossRefGoogle Scholar
  12. 11.
    M. M. Atwood & H. Zola, Comp. Biochem. Physiol., 20, 993 (1967).CrossRefGoogle Scholar
  13. 12.
    J. Schaefer, K. J. Kramer, J. R. Garbow, G. S. Jacob, E. O. Stejskal, T. L. Hopkins & R. D. Speirs, Science, 235, 1200 (1987).CrossRefGoogle Scholar
  14. 13.
    T. Kato, S. Ito, & K. Fujita, Biochem. Biophys. Acta, 881, 415 (1986).CrossRefGoogle Scholar
  15. 14.
    J. R. Schaefgen & P. J. Flory, J. Amer. Chem. Soc., 70, 2709 (1984).CrossRefGoogle Scholar
  16. 15.
    M. Sela, E. Katchalski & M. Gehatia, J. Amer. Chem. Soc., 78, 746 (1955).CrossRefGoogle Scholar
  17. 16.
    F. Wessely, K. Riedl & M. Gehatia, Monatsh, 81, 861 (1950).CrossRefGoogle Scholar
  18. 17.
    R. R. Becker & M. A. Stahmann, J. Biol. Chem., 204, 737 (1953).Google Scholar
  19. 18.
    H. Batzer, Makromol. Chem., 12, 145 (1954).CrossRefGoogle Scholar
  20. 19.
    G. S. Grest, K. Kremer & T. A. Witten, Macromolecules, 20, 1376 (1987).CrossRefGoogle Scholar
  21. 20.
    R. Arnon & M. Sela, Biochem. J., 75, 91, (1960);Google Scholar
  22. 20a.
    R. Arnon & M. Sela, Biochem. J. 77, 394 (1960).Google Scholar
  23. 21.
    M. Sela, S. Fuchs, & R. Arnon, Biochem. J., 85, 223 (1962).Google Scholar
  24. 22.
    D. A. Tewksbury & M. A. Stahmann, Arch. Biochem. Biophys., 105, 527 (1964).CrossRefGoogle Scholar
  25. 23.
    J. W. Stewart & M. A. Stahmann in: “Polyamino Acids, Polypeptides and Proteins”, M. A. Stahmann, Ed., Univ. of Wisconsin, Madison, Wisconsin, 1962; p. 102.Google Scholar
  26. 24.
    A. Yaron, & A. Berger, Biochem. Biophys. Acta, 107, 307 (1965).CrossRefGoogle Scholar
  27. 25.
    W. Moffitt & J. T. Yang, Proc. Natl. Acad. Sci. U.S.A., 42, 596 (1956).CrossRefGoogle Scholar
  28. 26.
    P. Urnes & P. Doty, Advan. Protein Chem., 16, 401 (1961).CrossRefGoogle Scholar
  29. 27.
    M. Sakamoto & Y. Kuroyanagi, J. Polym. Sci., Polym. Chem. Ed., 16, 1107 (1978).CrossRefGoogle Scholar
  30. 28.
    Lin-Yan, V. A. Derevitskaya & Z. A. Rogovin, Vysokomol. Soed., 1, 157 (1959).Google Scholar
  31. 29.
    Z. A. Rogovin, V. A. Derevitskaya, S. Tun, C. Wei-Gan & L. S. Galbraikh, J. Polym. Sci., 53, 117 (1961).Google Scholar
  32. 30.
    Z. A. Rogovin, J. Polym. Sci., 48, 443 (1960).CrossRefGoogle Scholar
  33. 31.
    P. Karrer & W. Wehrili, Helv. Chim. Acta., 9, 591 (1926).CrossRefGoogle Scholar
  34. 32.
    T. S. Gardner, J. Polym. Sci., 1, 121 (1946).CrossRefGoogle Scholar
  35. 33.
    Y. Avny & A. Zilka, Israel J. Chem., 3, 207 (1965/66).Google Scholar
  36. 34.
    C. H. Bamford, E. Elliot & W. E. Hanby, in: “Synthetic Polypeptides”, Academic Press., New York, 1956; p. 62.Google Scholar
  37. 35.
    M. Szwarc, Adv. Polym. Sci., 4, 1 (1965).CrossRefGoogle Scholar
  38. 36.
    I. E. Muskat, J. Amer. Chem. Soc., 56, 2449 (1934).CrossRefGoogle Scholar
  39. 37.
    V. A. Derevitskaya, M. Prokofeva & Z. A. Rogovin, Zh. Obshch. Khim., 28, 1368 (1958);Google Scholar
  40. 37a.
    V. A. Derevitskaya, M. Prokofeva & Z. A. Rogovin, Chem. Abst., 52, 17698i.Google Scholar
  41. 38.
    C. A. Harris & C. B. Purves, Paper Trade J., 110, 29 (1940); Chem. Abst. 34, 25873.Google Scholar
  42. 39.
    R. F. Schwenker, Jr., T. Kinoshita, K. Barlingand & E. Pacsu, J. Polym. Sci., 51, 185 (1961).Google Scholar
  43. 40.
    L. F. Audrieth & J. Kleinberg, in: “Nonaqueous Solvents”, Wiley & Sons, New York, 1953, p. 111.Google Scholar
  44. 41.
    E. Ott, H. M. Spurin & M. W. Graffin, in “Cellulose”, Vol. II, 2nd Ed., Interscience publ., New York, 1954, p. 751.Google Scholar
  45. 42.
    D. E. Paul, D. Lipkin & S. I. Weiseman, J. Amer. Chem. Soc., 78, 116 (1956).CrossRefGoogle Scholar
  46. 43.
    Y. Avny & A. Zilka, Europ. Polym. J., 2, 367 (1966).CrossRefGoogle Scholar
  47. 44.
    Y. Avny & A. Zilka, Europ. Polym. J., 2, 355 (1966).CrossRefGoogle Scholar
  48. 45.
    M. Idelson & E. R. Blout, J. Am. Chem. Soc., 79, 3948 (1957).CrossRefGoogle Scholar
  49. 46.
    M. Goodman & E. Peggion, Pure & Appl. Chem., 53, 699 (1981).CrossRefGoogle Scholar
  50. 47.
    Y. Imanishi, Pure & Appl. Chem., 53, 715 (1981).CrossRefGoogle Scholar
  51. 48.
    H. Sekiguchi, Pure & Appl. Chem., 53, 1689 (1981).CrossRefGoogle Scholar
  52. 49.
    H. J. Harwood, Polym. Preprints, 25 (1), 212 (1984).Google Scholar
  53. 50.
    K. Kurita, M. Kanari & Y. Koyama, Polym. Bull., 14, 511 (1985).CrossRefGoogle Scholar
  54. 51.
    T. Miyamoto, S.-I. Takahashi, S.-I. Tsuji, H. Ito & H. Inagaki, J. Appl. Polym. Sci., 31, 2303 (1986).CrossRefGoogle Scholar
  55. 52.
    D. J. Dawson, R. D. Gless & R. E. Wingard, Jr., J. Amer. Chem. Soc., 98, 5996 (1976).CrossRefGoogle Scholar
  56. 53.
    Y. Yamashita, Polym. Preprints, 16 (1), 429 (1975).Google Scholar
  57. 54.
    Y. Imanishi, T. Kimura & T. Higashimura, Polymer, 22, 1407 (1981).CrossRefGoogle Scholar
  58. 55.
    M. Maeda, Y. Nitadori & T. Tsuruta, Makromol. Chem., 181, 2251 (1980).CrossRefGoogle Scholar
  59. 56.
    M. Maeda & S. Inoue, Makromol. Chem., Rapid. Comm., 2, 537 (1981).CrossRefGoogle Scholar
  60. 57.
    M. Kimura, T. Egashira, T. Nishimura, M. Maeda & S. Inoue, Makromol. Chem., 183, 1393 (1982).CrossRefGoogle Scholar
  61. 58.
    D.-W. Chung, S. Higuchi, M. Maeda & S. Inoue, J. Amer. Chem. Soc., 108, 5823 (1986).CrossRefGoogle Scholar
  62. 59.
    M. Maeda, M. Aoyama & S. Inoue, Makromol. Chem., 187, 2137 (1986).CrossRefGoogle Scholar
  63. 60.
    S. Higuchi, T. Mozawa, M. Maeda & S. Inoue, Macromolecules, 19, 2263 (1986).CrossRefGoogle Scholar
  64. 61.
    S. Inoue & Y. Kawano, Makromol. Chem., 180, 1405 (1979).CrossRefGoogle Scholar
  65. 62.
    M. Takaki, R. Asami, M. Ichigawa & T. Ichie, Kobunshi Ronbunshi, 40, 703 (1983); Chem. Abst., 100, 1970.CrossRefGoogle Scholar
  66. 63.
    H. Kiba, Jpn. Kokai Tokyo Koho, JP 62, 38238, 19 Feb., 1987; Chem. Abst., 106, 158442n.Google Scholar
  67. 64.
    H. Kiniwa, Y. Doi, T. Nishikaji & N. Ogata, Nippon Kagaku Kaishi, 3, 460 (1987); Chem. Abst., 106, 206954e.CrossRefGoogle Scholar
  68. 65.
    H. Kiniwa, T. Nishikaji & N. Ogata, J. Polym. Sci., Polym. Chem., 25, 2689 (1987).CrossRefGoogle Scholar
  69. 66.
    H. Kiniwa, T. Nishikaji & N. Ogata, Makromol. Chem,. 188, 1841; 188, 1851 (1987).Google Scholar
  70. 67.
    H. Kiniwa, T. Nishikaji & N. Ogata, J. Polym. Sci., Polym. Chem., 25, 2953 (1987).CrossRefGoogle Scholar
  71. 68.
    M. P. Scheider & H. Bippi, J. Amer. Chem. Soc., 102, 7363 (1980).CrossRefGoogle Scholar
  72. 69.
    Y. Okamoto, S. Honda, I. Okamoto, H. Yuki, S. Murâta, R. Noyori & H. Takaya, J. Amer. Chem. Soc, 103, 6971 (1981).CrossRefGoogle Scholar
  73. 70.
    W. H. Pirkle, J. M. Finn, J. L. Schneider & B. C. Hamper, J. Amer. Chem. Soc., 103, 3964 (1981).CrossRefGoogle Scholar
  74. 71.
    S. Allenmark, B. Bomgren & H. Boren, J. Chromatography, 264, 63 (1983).CrossRefGoogle Scholar
  75. 72.
    N. Oi & H. Kitahara, J. Chromatography, 265, 117 (1983).CrossRefGoogle Scholar
  76. 73.
    Y. Okamoto, M. Kawashima, K. Yamamoto & K. Hatada, Chem. Lett., 5, 739 (1984).CrossRefGoogle Scholar
  77. 74.
    Y. Okamoto, M. Kawashima & K. Hatada, J. Amer. Chem. Soc., 106, 5357 (1984).CrossRefGoogle Scholar
  78. 75.
    W. H. Pirkle, C. J. Welch, G. S. Mahler, A. I. Meyer, L. M. Fuentes & M. Boes, J. Org. Chem., 49, 2504 (1984).CrossRefGoogle Scholar
  79. 76.
    Y. Okamoto, M. Kawashima, R. Abratani, K. Hatada, T. Nishiyama & M. Masuda, Chem. Lett., 7, 1237 (1986).CrossRefGoogle Scholar
  80. 77.
    W. R. Penrose, R. Zand & D. L. Oxender, J. Biol. Chem., 245, 1432 (1970).Google Scholar
  81. 78.
    M. Maeda, M. Kimura, Y. Hareyama & S. Inoue, J. Amer. Chem. Soc., 106, 251 (1984).CrossRefGoogle Scholar
  82. 79.
    K. Kataoka, M. Maeda, T. Nishimura, Y. Nitadori, T. Tsuruta, T. Akaike & Y. Sakurai, J. Biomed. Mater. Res., 14, 817 (1980).CrossRefGoogle Scholar
  83. 80.
    W. H. Daly & A. Munir, J. Polym. Sci. Chem. Ed., 22, 975 (1984).CrossRefGoogle Scholar
  84. 81.
    W. H. Daly, Soo Lee, & C. Rungaroonthaikul in: “Chemical Reactions on Polymers”, J. Benham and J. Kinstle, Eds., ACS Symposium Series, 394, Washington, D.C., 1988; Chapter 1.Google Scholar
  85. 82.
    J. V. Crivello, J. Org. Chem., 46, 3056 (1981).CrossRefGoogle Scholar
  86. 83.
    W. D. Fuller, M. S. Verlander & M. Goodman, Biopolymers, 15, 1869 (1976).CrossRefGoogle Scholar
  87. 84.
    J. S. Balcerski, E. S. Pysh, G. M. Bonora & C. Toniolo, J. Amer. Chem. Soc., 98, 3470 (1976).CrossRefGoogle Scholar
  88. 85.
    M. Palumbo, S. D. Rim, G. M. Bonora & C. Toniolo, Makromol. Chem., 177, 1477 (1976).CrossRefGoogle Scholar
  89. 86.
    C. Toniolo & M. Palumbo, Biopolymers, 16, 219 (1977).CrossRefGoogle Scholar
  90. 87.
    R. Katakai, J. C. S. Perkins Trans. I, 905 (1976).Google Scholar
  91. 88.
    T. Ozaki, A. Shoji & M. Furukawa, Makromol. Chem., 183, 781 (1982).CrossRefGoogle Scholar
  92. 89.
    A. Riveiro, R.F. Saltman & M. Goodman, Biopolymers, 19, 1771 (1980).CrossRefGoogle Scholar
  93. 90.
    J. A. Ferretti & B. W. Ninhan, Macromolecules, 3, 30 (1970).CrossRefGoogle Scholar
  94. 91.
    H. Block, “Poly (ybenzyl-L-glutamate) and Other Glutamic Acid Containing Polymers”, Gordon and Breach, New York, 1983; p. 56.Google Scholar
  95. 92.
    A. Kidera, M. Mochizuki, R. Hasegawa, T. Hayashi, H. Sato, A. Nakajima, R. A. Fredrickson, S. P. Powers, S. Lee & H. A. Sheraga; Macromolecules, 16, 162 (1983) and references mentioned therein.CrossRefGoogle Scholar
  96. 93.
    Y. Kobayashi, F. Cardinaux, B. O. Zweifel & H. A. Scheraga, Macromolecules, 10, 1271 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • William H. Daly
    • 1
  • Soo Lee
    • 1
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA

Personalised recommendations