Effects of Elastin Peptides on Ion Fluxes

  • T. FülöpJr.
  • M. P. Jacob
  • G. Fòris
  • Zs. Varga
  • L. Robert
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The degradation of elastin by elastase-type enzymes was shown to play an important role in several pathological processes such as the development of emphysema (Crystal, 1976; Bignonet al., 1978), arteriosclerosis (Robertet al., 1980, 1984), and a variety of skin diseases (Franceset al., 1984). All these enzymes, although of different natures (Bourdillonet al., 1984), are able to hydrolyze elastin and release soluble peptides. The released peptides (mainly kappa elastin, KE) were shown to have a variety of biological properties (Robertet al., 1970; Jacobet al., 1984). One of these was the chemotactic effect on monocyte and fibroblasts (Senioret al., 1980). Robertet al. (1967, 1970) demonstrated their antigenic nature. Rabbits immunized with elastin peptides were shown to develop severe arteriosclerosis (Robertet al., 1971; Jacobet al., 1984) and also lesions of pulmonary arteries. Transmembrane cation fluxes (Na+ , K+ , Ca2+ ) were shown to play an important role in cell activity regulation (Scullyet al., 1984; Blausteinet al., 1984). The chemotactic peptide receptors were shown to be coupled to the phosphoinositide-specific phospholipase C through a guanine nucleotide regulatory protein (Berridgeet al., 1984). This receptor activation involves hydrolysis of phosphoinositides followed by generation of inositol trisphosphate and diacylglycerol. The inositol trisphosphate is believed to induce the release of Ca2+ from an intracellular storage and as a consequence the level of intracellular free Ca2+ is increased (Reynolds, 1985). Furthermore, the formation of inositol tetrakisphosphate from inositol trisphosphate seems to have ionophore effects (Trimbleet al., 1987). Our aims were to investigate the effects of elastin peptides on ion fluxes and to elucidate their mechanism of action at the cellular and intracellular levels.


Pertussis Toxin Arachidonic Acid Release Inositol Trisphosphate cGMP Production Cation Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berridge, M. J., and Irvine, R. F., 1984, Nature 312:315–321.PubMedCrossRefGoogle Scholar
  2. Berridge, M. D., 1986, Biol. Chem. Hoppe-Seyler 367:447–456.PubMedCrossRefGoogle Scholar
  3. Bignon, J., and Robert, L., 1978, La revue du Médecin 19:764–778.Google Scholar
  4. Blaustein, M. D., and Hamlyn, J. M., 1984, Am. J. Med. 77:45–59.PubMedGoogle Scholar
  5. Bourdillon, M. C., Hornebeck, W., Soleilhac, J. M., and Robert, L., 1984, Biochem. Soc. Trans. 12: 876–887.Google Scholar
  6. Crystal, R. G., 1976, The Biochemical Basis of Pulmonary Function ,Marcel Dekker, New York.Google Scholar
  7. Fülöp, T., Jr., Jacobs, M. P., Varga, Zs., Fóris, G., Leövey, A., and Robert, L., 1986, Biochem. Biophys. Res. Commun. 141:92–98.PubMedCrossRefGoogle Scholar
  8. Fülöp, T., Jr., Hauck, M., Wórum, I., Föris, G., and Leövey, A., 1987, Immunol. Lett. 14:283–286.PubMedCrossRefGoogle Scholar
  9. Frances, C., and Robert, L., 1984, Int. J. Dermatol. 23:166–179.PubMedCrossRefGoogle Scholar
  10. Irvine, R. F., 1982, Biochemistry 204:3–10.Google Scholar
  11. Jacob, M. P., Hornebeck, W., Lafuma, C., Bernaudin, J. F., Robert, L., and Godean, G., 1984, Exp. Mol. Pathol. 41:171–190.PubMedCrossRefGoogle Scholar
  12. Jacob, M. P., Fülöp, T., Jr., Fóris, G., and Robert, L., 1987a, Proc. Natl. Acad. Sci. USA 84: 995–1000.PubMedCrossRefGoogle Scholar
  13. Jacob, M. P., Hornebeck, W., and Robert, L., 1987b, Exp. Mol. Pathol. 46:345–356.PubMedCrossRefGoogle Scholar
  14. Lagast, H., Lew, P. D., and Waldvogel, A., 1984, J. Clin. Invest. 73:107–115.PubMedCrossRefGoogle Scholar
  15. Reynolds, E. E., and Dubyak, G. R., 1985, Biochem. Biophys. Res. Commun. 130:627–632.PubMedCrossRefGoogle Scholar
  16. Robert, L., Stein, F., Pezess, M. P., and Poullain, N., 1967, Arch. Mal. Coeur 60:233–241.Google Scholar
  17. Robert, L., Robert, B., and Robert, A. M., 1970, Exp. Gerontol. 5:339–356.PubMedCrossRefGoogle Scholar
  18. Robert, A. M., Grosgogeat, Y., Reverdy, V., Robert, B., and Robert, L., 1971, Atherosclerosis 13: 427–449.PubMedCrossRefGoogle Scholar
  19. Robert, L., and Robert, A. M., 1980, in Frontiers of Matrix Biology: Biology and Pathology of Elastic Tissues ,Vol. 8 (A. M. Robert and L. Robert, eds.), Karger, Basel, pp. 130–173.Google Scholar
  20. Robert, L., Chaudiere, J., and Jacotot, B., 1984, in: Regression of Atherosclerotic Lesions: Experimental Studies and Observations in Humans (M. R. Malinow and V. H. Blaton, eds.), NATO ASI Series, Life Sciences, vol. 79, Plenum Press, New York, pp. 145–173.Google Scholar
  21. Scully, S. P., Segel, G. B., and Lichtman, M. A., 1984, J. Clin. Invest. 74:589–599.PubMedCrossRefGoogle Scholar
  22. Senior, R. M., Griffin, G. L., and Median, R. P., 1980, J. Clin. Invest. 66:859–862.PubMedCrossRefGoogle Scholar
  23. Sprenger, K. B. G., 1985, Clin. Physiol. Biochem. 3:208–220.PubMedGoogle Scholar
  24. Trimble, E. R., Bruzzone, R., Meehan, C. J., and Biden, T. J., 1987, Biochem. J. 242:289–292.PubMedGoogle Scholar
  25. Varga, Zs., Jacobs, M. P., Robert, L., and Fülöp, T., Jr., 1988a, Proc. Natl. Acad. Sci. (in press).Google Scholar
  26. Varga, Zs., Kovács, É. M., Paragh, G., Fülöp, T., Jr., Jacobs, M. P., and Robert, L., 1987b, Clin. Biochem. 21:127–130.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. FülöpJr.
    • 1
  • M. P. Jacob
    • 2
  • G. Fòris
    • 1
  • Zs. Varga
    • 1
  • L. Robert
    • 2
  1. 1.First Department of MedicineUniversity Medical School of DebrecenDebrecenHungary
  2. 2.Laboratory for Biochemistry of Connective TissueUniversity of Paris XII, Faculty of MedicineCréteilFrance

Personalised recommendations