Advertisement

Cardiac Protection by Halothane Following Ischemia and Calcium Paradox

  • Zeljko J. Bosnjak
  • Sumio Hoka
  • Lawrence Turner
  • John P. Kampine
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Calcium ions play a crucial role in the regulation of cardiac function and their movements may be profoundly affected in various pathophysiological conditions. Specifically, reper fusion of the severely ischemic myocardium is associated with a rapid net gain in intracellular calcium, largely in the mitochondria, and the development of contraction band necrosis (Shen and Jennings, 1972, Nayleret al., 1985). The extent of calcium accumulation on reperfusion of the ischemic heart is related to the severity and duration of ischemia and the degree of mechanical recovery (Henryet al., 1977; Bourdillon and Poole-Wilson, 1981). A marked calcium accumulation is also produced by exposure to calcium-containing solutions following a brief period of exposure to calcium-free perfusate, a phenomenon known as the “calcium paradox” (Ruigroket al., 1985). While the mechanisms underlying myocardial injury under these conditions are controversial, several interventions limiting depletion of high-energy phosphate stores and calcium accumulation have been shown to have a protective effect on the heart (Bourdillon and Poole-Wilson, 1982). Pretreatment with calcium-blocking agents before calcium-free perfusion or the onset of ischemia is reported to reduce the degree of ultrastructural damage and enhance recovery of contractile function (Wattset al., 1980; Ohharaet al., 1982). This potential beneficial intervention may have relevance to the clinical problems of reducing cardiac injury and restoring ventricular function following transient ischemic episodes and the use of cardioplegic solutions in patients undergoing myocardial revascularization.

Keywords

Coronary Flow Coronary Perfusion Pressure Calcium Accumulation Left Anterior Descend Occlusion Calcium Efflux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bland, G. H. L., and Lowenstein, E., 1976, Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart, Anesthesiology 45:287–293.PubMedCrossRefGoogle Scholar
  2. Bourdillon, P. D., and Poole-Wilson, P. A., 1981, Effects of ischemia and reperfusion on calcium exchange and mechanical function in isolated rabbit myocardium, Cardiovasc. Res. 15:121–130.PubMedCrossRefGoogle Scholar
  3. Bourdillon, P. D., and Poole-Wilson, P. A., 1982, The effects of verapamil, quiescence, and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium, Circ. Res. 50: 360–368.PubMedGoogle Scholar
  4. Bosnjak, Z. J., and Kampine, J. P., 1983, Effects of halothane, enflurane, and isoflurane on the SA node, Anesthesiology 58:314–321.PubMedCrossRefGoogle Scholar
  5. Bosnjak, Z. J., and Kampine, J. P., 1986, Effects of halothane on transmembrane potentials, Ca+ + transients, and papillary muscle tension in the cat, Am. J. Physiol. 251:H374–H381.PubMedGoogle Scholar
  6. Davis, R. F., Deboer, L. W. V., Rude, R. E., Lowenstein, E., and Maroko, P. R., 1983, The effect of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional myocardial blood flow in dogs following coronary artery occlusion, Anesthesiology 59:402–411.PubMedCrossRefGoogle Scholar
  7. Ferrari, R., Ceconi, C., Curello, S., Guarnieri, C., Caldarera, C.M., Albertini, A., and Visioli, O., 1985, Oxygen-mediated damage during ischemia and reperfusion: Role of the cellular defenses against oxygen toxicity, J. Mol. Cell. Cardiol. 17:937–945.PubMedCrossRefGoogle Scholar
  8. Filner, B. E., Karliner, J. S., 1976, Alterations in normal left ventricular performance by general anesthetic, Anesthesiology 45:610–621.PubMedCrossRefGoogle Scholar
  9. Henry, P. D., Schuchleib, R., Davis, J., Weiss E. S., and Sobel B. E., 1977, Myocardial contracture and accumulation of calcium in ischemic rabbit heart, Am. J. Physiol. 233:H677–H684.PubMedGoogle Scholar
  10. Hoka, S., Bosnjak, Z. J., and Kampine, J. P., 1987, Halothane inhibits calcium accumulation following myocardial ischemia and calcium paradox in guinea pig hearts, Anesthesiology 67:197–202.PubMedCrossRefGoogle Scholar
  11. Hug, C. C., 1979, Pharmacology-anesthetic drugs, in: Cardiac Anesthesia (J. A. Kaplan, ed.), Grune and Stratton, Orlando, pp. 3–37.Google Scholar
  12. Ikemoto, Y., Yatani, A., Arimura, H., Yoshitake, J., 1985, Reduction of the slow inward current of isolated rat ventricular cells by thiamylal and halothane, Acta Anesthesiol. Scand. 29:583–586.CrossRefGoogle Scholar
  13. Koomen, J. M., Jager, L. P., and van Noordwijk, J., 1980, Effects of perfusion pressure on coronary flow, myocardial Ca2+ -washout, and the occurrence of calcium paradox in isolated perfused rat heart ventricles, Basic Res. Cardiol. 75:318–327.PubMedCrossRefGoogle Scholar
  14. Kroll, D. A., and Knight, P. R., 1984, Antifibrillatory effects of volatile anesthetics in acute occlu-sion/reperfusion arrhythmias, Anesthesiology 61:657–661.PubMedCrossRefGoogle Scholar
  15. Lefer, A. M., Polansky, E. W., Bianchi, C. P., and Narayan, S., 1979, Influence of verapamil on cellular integrity and electrolyte concentrations of ischemic myocardial tissue in the cat, Basic Res. Cardiol. 74:555–567.PubMedCrossRefGoogle Scholar
  16. Lewartowski, B., Pytowski, B., and Janczewski, A., 1984, Calcium fraction correlating with contractile force of ventricular muscle of guinea-pig heart. Pflugers Arch. 401:198–203.PubMedCrossRefGoogle Scholar
  17. Lynch, III, C., Vogel, S., and Sperelakis, N., 1981, Halothane depression of myocardial slow action potentials, Anesthesiology 55:360–368.PubMedCrossRefGoogle Scholar
  18. Nakagawara, M., Takeshige, K., Takamatsu, J., Takahashi, S., Yoshitake, J., and Minakami, S., 1986, Inhibition of Superoxide production and Ca+ + mobilization in human neutrophils by halothane, enflurane, and isoflurane, Anesthesiology 64:4–12.PubMedCrossRefGoogle Scholar
  19. Nakanishi, T., Hishioka, K., and Jarmakani, J. M., 1982, Mechanism of tissue Ca2+ gain during reoxygenation after hypoxia in rabbit myocardium, Am. J. Physiol. 242:H437–H449.PubMedGoogle Scholar
  20. Nayler, W. G., Sturrock, W. J., and Panagiotopoulos, S., 1985, Calcium and myocardial ischaemia, in: Control and Manipulation of Calcium Movement (J. R. Parratt, ed.), Raven Press, New York, pp. 303–324.Google Scholar
  21. Ohhara, H., Kanaide, H., and Nakamura, M., 1982, A protective effect of verapamil on the calcium paradox in the isolated perfused rat heart, J. Mol. Cell. Cardiol. 14:13–20.PubMedCrossRefGoogle Scholar
  22. Porsius, A. J., and van Zwieten, P. A., 1975, Influence of halothane on calcium movements in isolated heart muscle and in isolated plasma membrane, Arch. Int. Pharmacodyn. Ther. 218:29–39.PubMedGoogle Scholar
  23. Prys-Roberts, C., Gersh, B. J., Baker, A. B., and Reuben, S. R., 1972, The effects of halothane on the interactions between myocardial contractility, aortic impedance and left ventricular performance. Theoretical considerations and results, Br. J. Anaesthesiol. 44:634–649.CrossRefGoogle Scholar
  24. Pytkowski, B., Lewartowski, B., Prokopczuk, A., Zdanowski, K., and Lewandowska, K., 1983, Excitation-and rest-dependent shifts in guinea-pig ventricular myocardium, Pflugers Arch. 398: 103–113.PubMedCrossRefGoogle Scholar
  25. Ruigrok, T. J. C., 1985, The calcium paradox and the heart, in: Control and Manipulation of Calcium Movement (J. R. Parratt, ed.), Raven Press, New York, pp. 341–365.Google Scholar
  26. Selye, H., Bausz, E., Grasso, S., and Mendell, P., 1960, Simple techniques for the surgical occlusion of coronary vessels in the rat, Angiology 11:398–407.PubMedCrossRefGoogle Scholar
  27. Shen, A. C., and Jennings, R. B., 1972, Myocardial calcium and magnesium in acute ischemic injury, Am. J. Pathol. 67:417–440.PubMedGoogle Scholar
  28. Shine, K. I., Serena, S. D., and Langer, G. A., 1971, Kinetic localization of contractile calcium in the rabbit myocardium, Am. J. Physiol. 221:1408–1417.PubMedGoogle Scholar
  29. Verrier, E. D., Edelist, G., Consigny, P. M., Robinson, S., and Hoffman, J. I. E., 1980, Greater coronary vascular reserve in dogs anesthetized with halothane, Anesthesiology 53:445–459.PubMedCrossRefGoogle Scholar
  30. Watts, J. A., Koch, C. D., and LaNoue, K. F., 1980, Effects of Ca2+ antagonism on energy metabolism: Ca2+ and heart function after ischemia, Am. J. Physiol. 238:H909–H916.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Zeljko J. Bosnjak
    • 1
  • Sumio Hoka
    • 1
  • Lawrence Turner
    • 1
  • John P. Kampine
    • 1
  1. 1.Department of AnesthesiologyMedical College of Wisconsin and USVA Medical CenterMilwaukeeUSA

Personalised recommendations