Interaction of Volatile Anesthetics with Calcium-Sensitive Sites in the Myocardium

  • T. J. J. Blanck
  • E. S. Casella
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


There are a number of inhaled agents that can produce general anesthesia. They are known as volatile anesthetics (VA). Three of the most commonly used VA are halothane (CF3CHBrCl), enflurane (CFHClCF2OCHF2), and isoflurane (CF3CHClOCHF2). They are effective and safe anesthetics, but their major side effect is a concentration-dependent depression of cardiac contractility (Brown and Crout, 1971). The depression of contractility, like anesthesia itself, is amazingly reversible but can have serious hemodynamic consequences in patients with cardiac disease, vascular abnormalities, and other organ system malfunctions. In these cases, the depression of cardiac contractility can result in dangerous metabolic imbalances.


Sarcoplasmic Reticulum Calcium Uptake Cardiac Contractility Volatile Anesthetic Halothane Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartfai, T., 1979, Preparation of metal-chelate complexes and the design of steady-state kinetic experiments involving metal nucleotide complexes, in: Advances in Cyclic Nucleotide Research ,Vol. 10 (G. Brooker, P. Greengard, and G. A. Robison, eds.), Raven Press, New York, pp. 219–242.Google Scholar
  2. Besch, H. R., Jones, L. R., and Watanabe, A. M., 1976, Intact vesicles of canine cardiac sarcolemma: Evidence from vectorial properties of Na+ K+ -ATPase, Circ. Res. 39:586–595.PubMedGoogle Scholar
  3. Blanck, T. J. J., 1981, A simple closed system for performing biochemical experiments at clinical concentration of volatile anesthetics, Anesth. Analg. 60:435–332.PubMedGoogle Scholar
  4. Blanck, T. J. J., and Thompson, M., 1981, Calcium transport by cardiac sarcoplasmic reticulum: modulation of halothane action by substrate concentration and pH, Anesth. Analg. 60:390–394.PubMedGoogle Scholar
  5. Blanck, T. J. J., and Thompson, M., 1982, Enflurane and isoflurane stimulate calcium transport by cardiac sarcoplasmic reticulum, Anesth. Analg. 61:142–145.PubMedCrossRefGoogle Scholar
  6. Bosnjak, Z. J., and Kampine, J. P., 1986, Effects of halothane on transmembrane potentials, Ca2+ transients, and papillary muscle tension in the cat, Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H374–H38l.PubMedGoogle Scholar
  7. Brandt, N., 1985, Identification of two populations of cardiac microsomes with nitrendipine receptors: Correlation of the distribution of dihydropyridine receptors with organelle specific markers, Arch. Biochem. Biophys. 242:306–319.PubMedCrossRefGoogle Scholar
  8. Brown, B. R., and Crout, J. R., 1971, A comparative study of the effects of five general anesthetics on myocardial contractility, Anesthesiology 34:236–245.PubMedCrossRefGoogle Scholar
  9. Casella, E. S., Suite, N. D. A., Fisher, Y. I., and Blanck, T. J. J., 1987, The effect of volatile anesthetics on the pH dependence of calcium uptake by cardiac sarcoplasmic reticulum, Anesthesiology 67:9S–102.CrossRefGoogle Scholar
  10. Dunnett, J., and Nayler, W. G., 1979, Effect of pH on calcium accumulation and release by isolated fragments of cardiac and skeletal muscle sarcoplasmic reticulum, Arch. Biochem. Biophys. 198: 434–438.PubMedCrossRefGoogle Scholar
  11. Ehlert, F. J., and Itoga, E., 1982, The interaction of [3H] nitrendipine with receptors for calcium antagonists in the cerebral cortex and heart of rats, Biochem. Biophys. Res. Commun. 104(3): 937–943.PubMedCrossRefGoogle Scholar
  12. Fabiato, A., and Fabiato, F., 1978, Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles, J. Physiol. (Lond.) 276:233–253.PubMedGoogle Scholar
  13. Fabiato, A., and Fabiato, F., 1979, Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. (Paris) 75:463–505.Google Scholar
  14. Flaherty, J. T., Weisfeldt, M. L., Bulkley, B. H., Gardner, T. J., Gott, V. L., and Jacobus, W. E., 1982, Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance, Circulation 65:561–571.PubMedCrossRefGoogle Scholar
  15. Gonzalez, N. C., and Clancy, R. L., 1975, Inotropic and intracellular acid-base changes during metabolic acidosis, Am. J. Physiol. 228:1060–1064.PubMedGoogle Scholar
  16. Gould, R. J., Murphy, K. M. M., and Snyder, S. H., 1984, Tissue heterogeneity of calcium channel antagonist binding sites labeled by [3H]nitrendipine, Mol. Pharmacol. 25:235–244.PubMedGoogle Scholar
  17. Harigaya, S., and Schwartz, A., 1969, Rate of calcium binding and uptake in normal animal and failing human cardiac muscle, Circ. Res. 25:781–794.PubMedGoogle Scholar
  18. Jacobus, W. E., Pores, I. H., Taylor, G. E., Nunnally, R. L., Hollis, D. P., and Weisfeldt, M. L., 1978, Tight coupling of intracellular pH and ventricular performance, J. Mol. Cell. Cardiol. 10: 39.CrossRefGoogle Scholar
  19. Lain, R. F., Hess, M. L., Gertz, E. W., Briggs, F. N., 1968, Calcium uptake activity of canine myocardial sarcoplasmic reticulum in the presence of anesthetic agents, Circ. Res. 23:597–604.PubMedGoogle Scholar
  20. Lynch, C., 1986, Differential depression of myocardial contractility by halothane and isoflurane in vitro, Anesthesiology 64:620–631.PubMedCrossRefGoogle Scholar
  21. Madiera, V. M. C., 1975, A rapid and ultrasensitive method to measure Ca++ movements across biological membranes, Biochem. Biophys. Res. Commun. 64:870–876.CrossRefGoogle Scholar
  22. Merin, R. G., Kumasawa, T., and Honig, C. R., 1974, Reversible interaction between halothane and calcium on cardiac actomyosin ATPase: Mechanisms and significance, J. Pharmacol. Exp. Ther. 190:1–14PubMedGoogle Scholar
  23. Nakamaru, Y., and Schwartz, A., 1970, Possible control of intracellular calcium metabolism by [H + ]: sarcoplasmic reticulum of skeletal and cardiac muscle, Biochem. Biophys. Res. Commun. 41: 830–836.PubMedCrossRefGoogle Scholar
  24. Ohnishi, S. T., DiCamillo, C. A., Singer, M., and Price, H. L., 1980, Correlation between halothane-induced myocardial depression and decreases in La3+ -displaceable calcium in cardiac muscle cells, J. Cardiovasc. Pharmacol. 2:67–75.PubMedCrossRefGoogle Scholar
  25. Sarmeinto, J., Janis, R. A., Colvin, R. A., Triggle, D. J., and Katz, A. M., 1983, Binding of the calcium channel blocker nitrendipine to its receptor in purified sarcolemma from canine cardiac ventricle, J. Mol. Cell. Cardiol. 15:135–137.CrossRefGoogle Scholar
  26. Su, J. Y., and Kerrick, G. L., 1980, Effects of enflurane on functionally skinned myocardial fibers from rabbits, Anesthesiology 52:385–389.PubMedCrossRefGoogle Scholar
  27. Tate, C. A., Van Winkle, W. B., and Entman, M. L., 1980, Time-dependent resistance to alkaline pH of oxalate-supported calcium uptake by sarcoplasmic reticulum, Life Sci. 27:1453–1464.PubMedCrossRefGoogle Scholar
  28. Tate, C. A., Chu, A., McMillin-Wood, J., Van Winkle, W. B., and Entman, M. L., 1981, Evidence for a calcium-sensitive factor which alters the alkaline pH sensitivity of sarcoplasmic reticulum calcium transport, J. Biol. Chem. 256:2934–2939.PubMedGoogle Scholar
  29. Williams, L. T., and Jones, L. R., 1983, Specific binding of the calcium antagonist [3H]Nitrendipine to subcellular fractions isolated from canine myocardium, J. Biol. Chem. 258:5344–5347.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. J. J. Blanck
    • 1
  • E. S. Casella
    • 1
  1. 1.Division of Cardiac Anesthesia, Department of Anesthesiology and Critical Care MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations