Advertisement

Characteristics and Functional Implications of Spontaneous Sarcoplasmic Reticulum-Generated Cytosolic Calcium Oscillations in Myocardial Tissue

  • Edward G. Lakatta
  • Maurizio C. Capogrossi
  • Harold A. Spurgeon
  • Michael D. Stern
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

The process by which electrical excitation of cardiac muscle cells leads to contraction is incompletely understood. It is clear, however, that in all mammalian hearts, release of Ca2+ from the sarcoplasmic reticulum (SR) contributes to the activation of the myofilaments. Spontaneous SR oscillatory Ca2+ release (Fig. 1), given the required conditions, appears to be a universal phenomenon in mammalian preparations (see Lakattaet al., 1985 for review). While spontaneous chaotic cellular contractions, a mechanical sequalae of SR Ca2+ oscillations (CaOsc), was observed over 70 years ago (see Capogrossiet al., 1986b), the universality of CaOsc had not generally been recognized, and its multiple effects on myocardial function have not generally been considered collectively.

Keywords

Sarcoplasmic Reticulum Spontaneous Release Cardiac Preparation Normal Membrane Potential Mammalian Cardiac Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D. G., Eisner, D. A., Pirolo, J. S., and Smith, G. L.,1985, The relationship between intracellular calcium and contraction in calcium overloaded ferret papillary muscles, J. Physiol. ,364:169–182.PubMedGoogle Scholar
  2. Bloom, S., 1970, Spontaneous rhythmic contraction of separated heart muscle cells, Science 167: 1727–1729.PubMedCrossRefGoogle Scholar
  3. Capogrossi, M. C., and Lakatta, E. G., 1985, Frequency modulation and synchronization of spontaneous oscillations in cardiac cells, Am. J. Physiol. 248:H412–H418.PubMedGoogle Scholar
  4. Capogrossi, M. C., and Lakatta, E. G., 1988, Intracellular calcium and activation of contraction as studied by optical techniques, in: Isolated Adult Cardiomyocytes ,Volume II (H. M. Piper and G. Isenberg, eds.), CRC Press, Boca Raton, FL (in press).Google Scholar
  5. Capogrossi, M. C., Suarez-Isla, B. A., and Lakatta, E. G., 1986a, The interaction of electrically stimulated twitches and spontaneous contractile waves in single cardiac myocytes. J. Gen. Physiol. 88:615–633.PubMedCrossRefGoogle Scholar
  6. Capogrossi, M. C., Kort, A. A., Spurgeon, H. A., and Lakatta, E. G., 1986b, Single adult rabbit and rat cardiac myocytes retain the Ca2+ -and species-dependent systolic and diastolic contractile properties of intact muscle, J. Gen. Physiol. 88:589–613.PubMedCrossRefGoogle Scholar
  7. Capogrossi, M. C., Kaku, T., Filburn, C. H., Pelto, D. J., Hansford, R. G., and Lakatta, E. G., 1986c, Phorbol ester stimulates membrane association of protein kinase C and inhibits spontaneous Ca2+ dependent sarcoplasmic reticulum Ca2+ release in rat cardiac cells, Fed. Proc. 45:210 (Abstr.).Google Scholar
  8. Capogrossi, M. C., Houser, S. R., Bahinski, A., and Lakatta, E. G., 1988, Synchronous occurrence of spontaneous localized calcium release from the sarcoplasmic reticulum generates action potentials in rat cardiac ventricular myocytes at normal resting membrane potential, Circ. Res. 61:498–503.Google Scholar
  9. Capogrossi, M. C., Stern M. D., Spurgeon H. A., and Lakatta E. G., 1988, Spontaneous Ca2+ release from the sacroplasmic reticulum limits Ca2+ -dependent twitch potentiation in individual cardiac myocytes. J. Gen. Physiol. 91:133–155.PubMedCrossRefGoogle Scholar
  10. Chiesi, M., Ho, M. M., Inesi,G., Somlyo, A. V., andSomlyo, A. P., 1981, Primary role of sarcoplasmic reticulum in phasic contractile activation of cardiac myocytes with shutted myolemma, J. Cell. Biol. 91:728–742.PubMedCrossRefGoogle Scholar
  11. Cobbold, P. H., and Bourne, P. K., 1984, Aequorin measurements of free calcium in single heart cells, Nature 312:444–446.PubMedCrossRefGoogle Scholar
  12. Dani, A. M., Cittadini, A., and Inesi, G., 1979, Calcium transport and contractile activity in dissociated mammalian heart cells, Am. J. Physiol. 237:CI47–CI55.Google Scholar
  13. Fabiato, A., 1985, Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85:189–246.PubMedCrossRefGoogle Scholar
  14. Fabiato, A., and Fabiato, F., 1972, Excitation-contraction coupling of isolated cardiac fibers with disrupted or closed sarcolemma. Calcium dependent cyclic and tonic contractions. Circ. Res. 31: 293–307.PubMedGoogle Scholar
  15. Fabiato, A., and Fabiato, F., 1975, Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells. Nature 253:556–558.PubMedCrossRefGoogle Scholar
  16. Fabiato, A., and Fabiato, F., 1978, Calcium induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and newborn rat ventricules. Ann. N.Y. Acad. Sci. 307:491–522.PubMedCrossRefGoogle Scholar
  17. Kass, R. S., and Tsien, R. W., 1982, Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers, Biophys. J. 38:259–269.PubMedCrossRefGoogle Scholar
  18. Kort, A. A., and Lakatta, E. G., 1984, Calcium-dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissues. Circ. Res. 54:396–404, 1984.PubMedGoogle Scholar
  19. Kort, A. A., Capogrossi, M. C., and Lakatta, E. G., 1985a, Frequency, amplitude, and propagation velocity of spontaneous Ca2 + -dependent contractile waves in intact adult rat cardiac muscle and isolated myocytes. Cire. Res. 57:844–855.Google Scholar
  20. Kort, A. A., Lakatta, E. G., Marban, E., Stern, M. D., and Wier, W. G., 1985b, Fluctuations in intracellular calcium concentrations and their effect on tonic tension in canine cardiac Purkinje fibres. J. Physiol. 367:391–308.Google Scholar
  21. Lakatta, E. G., and Lappe, D. L., 1981, Diastolic scattered light fluctuations, resting force and twitch force in mammalian cardiac muscle, J. Physiol. 315:369–394.PubMedGoogle Scholar
  22. Lakatta, E. G., Capogrossi, M. C., Kort, A. A., and Stern, M. D., 1985, Spontaneous myocardial Ca oscillations: overview with emphasis on ryanodine and caffeine. Fed. Proc. 44:2977–2983.PubMedGoogle Scholar
  23. Lederer, W. J., and Tsien, R. W., 1976, Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres, J. Physiol. 263:73–100.PubMedGoogle Scholar
  24. Lehto, H., Talo, A., Tirri, R., and Vornanen, 1983, Membrane potential oscillations in enzymatically isolated rat myocardial cells, Aeta Physiol. Scand. 118:385–391.CrossRefGoogle Scholar
  25. Nosek, T. M., Williams, M. F., and Zeigler, S.T., 1986, Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle, Am. J. Physiol. 250:C807–811.PubMedGoogle Scholar
  26. Orchard, C. H., Eisner, D. A., and Allen, D. G., 1983, Oscillations of intracellular Ca2+ in mammalian cardiac muscle, Nature 304:735–738.PubMedCrossRefGoogle Scholar
  27. Orchard, C. H., Houser, S. R., Kort, A. A., Bahinski, A., Capogrossi, M. C., and Lakatta, E. G., 1987, Acidosis facilitates spontaneous sarcoplasmic reticulum Ca2+ release in rat myocardium, J. Gen. Physiol. 90:145–165.PubMedCrossRefGoogle Scholar
  28. Rousseau, E., Smith, J. S., Henderson, J. S., and Meissner, G., 1986, Single channel and 45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel, Biophys. J. 50:1009–1014.PubMedCrossRefGoogle Scholar
  29. Stern, M. D., Capogrossi, M. C., and Lakatta, E. G., 1984, Propagated contractile waves in single cardiac myocytes modeled as regenerative calcium-induced calcium release from the sarcoplasmic reticulum, Biophys. J. 45:94 (Abstr.).Google Scholar
  30. Stern, M. D., Kort, A. A., Bhatnagar, G. M., and Lakatta, E. G., 1983, Scattered-light intensity fluctuations in diastolic rat cardiac muscle caused by spontaneous Ca+ + -dependent cellular mechanical oscillations, J. Gen. Physiol. 82:119–153.PubMedCrossRefGoogle Scholar
  31. Stern, M. D., Weisman, H. F., Renlund, D. G., Gerstenblith, G., and Lakatta, E. G., 1985, Cellular calcium oscillations in intact perfused hearts detected by laser light scattering: cellular mechanism for diastolic tone, Circulation 72(3): 196 (Abstr.).Google Scholar
  32. Talo, A., Mclvor, M. E., Spurgeon, H. A., and Lakatta, E., 1986, Membrane currents during spontaneous contractile waves in rat cardiac myocytes, Fed. Proc. 45:769 (Abstr.).Google Scholar
  33. Uglesity, A., Sharma, V. K., and Sheu, S.-S., 1987, Effect of protein kinase C activation on the inotropic response induced by α-adrenoceptor stimulation in rat myocardium, Biophys. J. 51:264a (Abstr.).Google Scholar
  34. Williford, D. J., Sharma, V. K., Walton, M. K., and Sheu, S.-S., 1987, Isoproterenol reduces cytosolic calcium concentration measured with fura 2 in resting single isolated rat ventricular myocytes, Biophys. J. 51:262a (Abstr.).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Edward G. Lakatta
    • 1
  • Maurizio C. Capogrossi
    • 1
  • Harold A. Spurgeon
    • 1
  • Michael D. Stern
    • 1
  1. 1.Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on AgingNational Institutes of Health, and Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations