Cell Calcium in Malignant Hyperthermia

Skeletal Muscle Contracture and Ca2+ Regulation by Sarcoplasmic Reticulum
  • T. E. Nelson
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Malignant hyperthermia (MH) is a genetic disease of man and various animal species that predisposes to a hypermetabolic syndrome triggered by certain anesthetic agents (Gronert, 1965; Nelson and Flewellen, 1983). Susceptibility to the MH syndrome is prevalent in swine and this also predisposes to a stress-induced syndrome in this species (Nelson, 1973). Potent volatile anesthetics such as halothane and depolarizing skeletal muscle relaxants such as succinylcholine are triggering agents for MH in susceptible man and animals. The state of anesthesia alone is not responsible for MH as evidenced by the fact that barbiturates, nitrous oxide, and narcotics can be used to provide anesthesia for the MH patient without triggering the syndrome. The primary defect for MH appears to be in skeletal muscle and a working hypothesis is that anesthetic agents which cause MH do so by producing a sustained increase in Ca2+ inside the muscle cell. Increases in myoplasmic Ca2+ below contracture threshold can increase oxygen consumption (Bianchiet al., 1975), and if unabated this can deplete energy necessary to maintain Ca2+ below contracture threshold. Further increases in myoplasmic Ca2+ can then activate the contractile elements, producing the clinical features of skeletal muscle rigidity and lactic acidosis that are observed in the malignant phases of the syndrome.


Sarcoplasmic Reticulum Malignant Hyperthermia Malignant Hyperthermia Coupling Time Interval Sarcoplasmic Reticulum Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archibald, A. L., and Imlak, P., 1985, The halothane sensitivity locus and its linkage relationships, An. Bld. Groups. Biochem. Gen. 16:253–256.CrossRefGoogle Scholar
  2. Berman, M. C., Conradie, P. J., and Kench, J. E., 1972, The mechanism of accelerated skeletal muscle glycogenolysis during malignant hyperthermia in swine, S. Afr. Med. J. 46:1810.Google Scholar
  3. Bianchi, C. P., Narayan, S., and Lakshminarayanaiah, N., 1975, Mobilization of muscle calcium and oxygen uptake in skeletal muscle, in: Calcium Transport in Contraction and Secretion (E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds.), Elsevier, New York, pp. 503–515.Google Scholar
  4. Britt, B.A., Frodis, W., Scott, E., Clements, M. J., and Endrenyi, L., 1982, Comparison of the caffeine skinned fibre tension (CSFT) test with the caffeine-halothane contracture (CHC) test in the diagnosis of malignant hyperthermia, Can. Anaesth. Soc. J. 29(6):550–562.PubMedCrossRefGoogle Scholar
  5. Endo, M., Yagi, S., Ishizuka, T., Horiuti, K., Koga, Y., and Amaha, K., 1983, Changes in the Ca-induced Ca release mechanism in the sarcoplasmic reticulum of the muscle from a patient with malignant hyperthermia, Biomed. Res. 4(l):83–92.Google Scholar
  6. Flewellen, E. H., and Nelson, T. E., 1980, Dantrolene dose response in malignant hyperthermia-susceptible (MHS) swine: Method to obtain prophylaxis and therapeusis, Anesthesiology 52(4): 303–308.PubMedCrossRefGoogle Scholar
  7. Gronert, G. A., 1980, Malignant hyperthermia, Anesthesiology 53:395–423.PubMedCrossRefGoogle Scholar
  8. Harrison, G.G., 1973, Recent advances in understanding of anaesthetic-induced malignant hyperpyrexia, Anaesthetist 22:373–376.Google Scholar
  9. Harrison, G. G., Saunders, S. J., Biebuyck, J. F., Hickman, R., Dent, D. M., Weaver, V., and Terblanche, J., 1969, Anaesthetic-induced malignant hyperpyrexia and a method for its prediction, Br. J. Anaesthiol. 41:844–854.CrossRefGoogle Scholar
  10. Kalow, W., Britt, B. A., Terreau, M. E., and Haist, C., 1970, Metabolic error of muscle metabolism after recovery from malignant hyperthermia, Lancet 2:895–898.PubMedCrossRefGoogle Scholar
  11. Kastenschmidt, L. L., Hoekstra, W. G., and Briskey, E. J., 1968, Glycolytic intermediates and cofactors in “fast-” and “slow-glycolyzing” muscles of the pig, J. Food Service 33:151–158.CrossRefGoogle Scholar
  12. Kim, D. H., Sreter, F. A., Ohnishi, T., Ryan, J. F., Roberts, J., Allen, P. D., Meszaros, L. G., and Antoniu, B., 1984, Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles, Biochim. Biophys. Acta 775(3):320–327.PubMedCrossRefGoogle Scholar
  13. Kolb, M. E., Home, M. L., and Martz, R., 1982, Dantrolene in human malignant hyperthermia, Anesthesiology 56:254–262.PubMedCrossRefGoogle Scholar
  14. Mickelson, J. R., Ross, J. A., Reed, B. K., and Louis, C. F., 1986, Enhanced Ca2+ -induced calcium release by isolated sarcoplasmic reticulum vesicles from malignant hyperthermia susceptible pig muscle, Biochim. Biophys. Acta 862:318–328.PubMedCrossRefGoogle Scholar
  15. Nelson, T. E., 1973, Porcine stress syndromes, in: International Symposium on Malignant Hyperthermia (R. A. Gordon, B. A. Britt, and W. Kalow, eds.), Charles C Thomas, Springfield, pp. 191–197.Google Scholar
  16. Nelson, T. E., 1977, Excitation-contraction coupling: A common etiologic pathway for malignant hyperthermia susceptible muscle, in: Malignant Hyperthermia (J. A. Aldrete and B. A. Britt, eds.), Grune and Stratton, New York, pp. 23–36.Google Scholar
  17. Nelson, T. E., 1983, Abnormality in calcium release from skeletal sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia, J. Clin. Invest. 72:862–870.PubMedCrossRefGoogle Scholar
  18. Nelson, T. E., Flewellen, E. H., 1983, Current concepts, The malignant hyperthermia syndrome, N. Engl. J. Med. 309:416–418.PubMedCrossRefGoogle Scholar
  19. Nelson, T. E., Jones, E. W., Venable, J. H., and Kerr, D. D., 1972, Malignant hyperthermia of Poland China swine, Anesthesiology 36:52–56.PubMedCrossRefGoogle Scholar
  20. Nelson, T. E., Flewellen, E. H., and Arnett, D. W., 1983, Prolonged electromechanical coupling time intervals in skeletal muscle of pigs susceptible to malignant hyperthermia, Muscle Nerve 6:263–268.PubMedCrossRefGoogle Scholar
  21. Ohnishi, S. T., and Gronert, G. A., 1983, The sarcoplasmic reticulum of swine with malignant hyperthermia has abnormal calcium-induced and halothane-induced calcium release phenomena, Bio-phy. J. 4l:l67A.Google Scholar
  22. Quinlan, J. G., Iaizzo, P. A., Gronert, G. A., and Taylor, S. R., 1986, Use of dantrolene plus multiple pulses to detect stress-susceptible porcine muscle, J. Appl. Physiol. 60:1313–1320.PubMedCrossRefGoogle Scholar
  23. Smith, C., and Bampton, P. R., 1977, Inheritance of reaction to halothane anaesthesia in pigs, Genet. Res. Camb. 22:287–292.CrossRefGoogle Scholar
  24. Takagi, A., 1976, Abnormality of sarcoplasmic reticulum in malignant hyperpyrexia, Adv. Neurol. Sci. 20:109–113.Google Scholar
  25. Weber, A., and Hertz, R., 1968, The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum, J. Gen. Physiol. 52:750–759.PubMedCrossRefGoogle Scholar
  26. Wood, D. S., Willner, J. H., and Solviati, G., 1982, Malignant hyperthermia: The pathogenesis of abnormal caffeine contracture, in Disorders of the Motor Unit (D. L. Schotland, ed.), John Wiley and Sons, New York, pp. 597–610.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. E. Nelson
    • 1
  1. 1.Department of AnesthesiologyUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations