Role of Phosphoinositides in the Response of Mammalian Cells to Heat Shock

  • Stuart K. Calderwood
  • Mary Ann Stevenson
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


All cellular organisms possess a profound response to temperature shock which consists of the expression of a group of phylogenetically well-preserved genes, the heat shock genes (Lindquist, 1986; Pelham, 1986). They are among the most highly conserved of all known genes. The response appears to be homeostatic in nature leading to heat resistance (Lindquist, 1986). In animal cells, the heat shock response leads to profound changes at the level of transcription (Parker and Topol, 1984; Pelham, 1986), RNA processing (Toot and Lindquist, 1986), translation (Duncanet al., 1987), and intracellular protein transport (Napolitanoet al., 1987). The biochemical regulation of these effects is not understood.


Heat Shock Heat Shock Response Inositol Phosphate Heat Shock Gene Inositol Trisphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahnn, J., March, P. E., Takiff, H. E., and Inouye, M., 1986, A GTP binding protein of Escherichia coli has homology to yeast RAS proteins, Proc. Natl. Acad. Sci. USA 83:8849–8853.PubMedCrossRefGoogle Scholar
  2. Ashburner, M., and Bonner, J. J., 1979, The induction of gene activity in drosophila by heat shock, Cell 17:241–254.PubMedCrossRefGoogle Scholar
  3. Calderwood, S. K., Stevenson, M. A., and Hahn, G. M., 1985, Cyclic AMP and the heat shock response in Chinese hamster ovary cells, Biochem. Biophys. Res. Commun. 126:911–916.PubMedCrossRefGoogle Scholar
  4. Duncan, R., Milburn, S. C., andHershey, J. W. B., 1987, Regulated phosphorylation and low abundance of Hela cell initiation factor eIF-4F suggests a role in translational control, J. Biol. Chem. 262: 380–388.PubMedGoogle Scholar
  5. Irvine, R. F., 1986, The structure, metabolism, and analysis of inositol lipids and inositol phosphates, in: Phosphoinositides and Receptor Mechanisms ,Vol. 7, Receptor Biochemistry and Methodology, (J. C. Venter and L. C. Harrison, eds.), Alan R. Liss, New York, pp. 89–109.Google Scholar
  6. Lindquist, S. L., 1986, The heat shock response, Ann. Rev. Biochem. 55:563–582.CrossRefGoogle Scholar
  7. Napolitano, E. W., Pachter, J. S., and Liem, R. K. H., 1987, Intracellular distribution of mammalian stress proteins, J. Biol. Chem. 262:1493–1504.PubMedGoogle Scholar
  8. Paris, S., Chambard, J. C., and Pouyssegur, J., 1987, Coupling between phosphoinositide breakdown and mitogenic events in hbroblasts, J. Biol. Chem. 262:1977–1983.PubMedGoogle Scholar
  9. Parker, C. S., and Topol, J., 1984, A drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene, Cell 37:273–283.PubMedCrossRefGoogle Scholar
  10. Pelham, H. R. B., 1986, Speculations on the functions of the major heat shock and glucose regulated proteins, Cell 46:959–961.PubMedCrossRefGoogle Scholar
  11. Stevenson, M. A., Calderwood, S. K., and Hahn, G. M., 1986, Rapid increases in inositol trisphosphate and intracellular Ca2+ after heat shock, Biochem. Biophys. Res. Commun. 137:826–833.PubMedCrossRefGoogle Scholar
  12. Stryer, L., and Bourne, H. R., 1986, G proteins: A family of signal transducers, Ann. Rev. Cell Biol. 2:391–419.PubMedCrossRefGoogle Scholar
  13. Toot, H. J., and Lindquist, S. L., 1986, RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis, Cell 45:185–193.CrossRefGoogle Scholar
  14. Uhing, R. J., Prpic, V., Hang, J., and Exton, J. H., 1986, Hormone stimulated polyphosphoinositide breakdown in rat liver plasma membranes, J. Biol. Chem. 261:2140–2146.PubMedGoogle Scholar
  15. Ui, M., 1986, Pertussis toxin as a probe of receptor coupling to inositol lipid metabolism, in: Phosphoinositides and Receptor Mechanisms; Vol. 7, Receptor Biochemistry and Methodology (J. C. Venter and L. C. Harrison, eds.), Alan R. Liss, New York, pp. 163–197.Google Scholar
  16. Wolf, B. A., Comens, P. G., Ackermann, K. E., Sherman, W. R., and McDaniel M. L., 1985, The digitonin-permeabilized pancreatic islet model, Biochem. J. 227:965–969.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Stuart K. Calderwood
    • 1
  • Mary Ann Stevenson
    • 1
  1. 1.Joint Center for Radiation Therapy and Dana Farber Cancer InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations