Advertisement

Prevention of Ischemic Brain Mitochondrial Injury by Lidoflazine

  • Robert E. Rosenthal
  • Gary Fiskum
  • Fozia Hamud
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Viability of the brain is dependent on maintenance of ionic and electrochemical gradients within neurons as well as within subcellular components. Of particular interest is neuronal handling of calcium. Under aerobic, steady-state conditions intracellular Ca2+ concentration is maintained at basal levels of approximately 0.1µM by ATP-dependent ionic pumps, as compared to extracellular levels of 1.0 mM. In the brain, more than 80% of ATP is generated through mitochondrial oxidative phosphorylation (Fiskum, 1983, 1985). If oxidative phosphorylation were interrupted, ATP synthesis would be greatly impaired, thus preventing maintenance of ionic gradients, with potentially catastrophic consequences. Loss of calcium homeostasis has been linked to the initiation of various degradative processes including activation of phospholipases (Fiskumet al., 1985), lipid peroxidation (McCord, 1985), vascular spasm (Borgerset al., 1983), induction of coagulative necrosis (Farber, 1982), and eventually cell death (Borgerset al., 1983).

Keywords

Cerebral Ischemia Calcium Antagonist Brain Mitochondrion Mitochondrial Electron Transport Chain Mitochondrial Oxidative Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgers, M., Thone, F., Van Reempts, J., and Verheyen, F., 1983, The role of calcium in cellular dysfunction, Am. J. Emerg. Med. 2:154–161.CrossRefGoogle Scholar
  2. Clark, J. B., and Nicklas, W. J., 1970, The metabolism of rat brain mitochondria, J. Biol. Chem. 245: 4724–4731.PubMedGoogle Scholar
  3. Edmonds, H. L., Wauquier, A., Melis, W., Van Den Broeck, W. A. E., Van Loon, J., and Janssen, P. A. J., 1985, Improved short-term neurological recovery with flunarizine in a canine model of cardiac arrest. Am. J. Emerg. Med. 3:150–155.PubMedCrossRefGoogle Scholar
  4. Farber, J. L., 1982, Biology of disease: Membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis, Lab. Invest. 47:114–123.PubMedGoogle Scholar
  5. Fiskum, G., and Lehninger, A. L., 1982, Mitochondrial regulation of intracellular calcium, in: Calcium and Cell Function ,Vol. 2 (W. Y. Chung, ed.), Academic Press, New York, pp. 39–79.Google Scholar
  6. Fiskum, G., 1983, Involvement of mitochondria in ischemic cell injury and in regulation of intracellular calcium, Am. J. Emerg. Med. 2:147–153.CrossRefGoogle Scholar
  7. Fiskum, G., 1985, Mitochondrial damage during cerebral ischemia, Ann. Emerg. Med. 14:810–815.PubMedCrossRefGoogle Scholar
  8. Fiskum, G., Pfeiffer, D. R., Broekemeir, K. M., and Baroody, B., 1985, Calcium buffering characteristics and phospholipase activities of rat brain mitochondria (Abstract), Biophys. J. 47:443a.CrossRefGoogle Scholar
  9. Hamud, F., and Fiskum, G., 1985, Loss of maximal capacities for Ca2+ accumulation and oxidative phosphorylation by rat brain mitochondria during cerebral ischemia (Abstract), Biophys. J. 41 415a.Google Scholar
  10. Hillered, L., Siesjo, B. K., and Arfors, K. E., 1984, Mitochondrial response to transient forebrain ischemia and recirculation in the rat, J. Cereb. Blood Flow. Metabol. 4:438–446.CrossRefGoogle Scholar
  11. McCord, J. M., 1985, Oxygen-derived free radicals in postischemic tissue injury, N. Engl. J. Med. 312:159–163.PubMedCrossRefGoogle Scholar
  12. Mela, L., 1979, Reversibility of mitochondrial metabolic response to circulatory shock and tissue ischemia, Circ. Shock Suppl. 1:61–67.PubMedGoogle Scholar
  13. Nayler, W. G., Ferrari, R., and Williams, A., 1980, Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium, Am. J. Cardiol. 46:242–248.PubMedCrossRefGoogle Scholar
  14. Portzehl, H., Caldwell, P. C., and Ruegg, J. C., 1964, The dependence of contraction and relaxation of muscle fibres from the crab maia squinado on the internal concentration of free calcium ions, Biochim. Biophys. Acta 79:581–591.PubMedGoogle Scholar
  15. Rehncrona, S., Mela, L., and Siesjo, B. K., 1979, Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia, Stroke 10:437–446.PubMedCrossRefGoogle Scholar
  16. Rosenthal, R. E., Hamud, F., Fiskum, G., Varghese, P. J., and Sharpe, S., 1987, Cerebral ischemia and reperfusion: Prevention of brain mitochondrial injury by lidoflazine, J. Cereb. Blood Flow Metab. 7:752–758.PubMedCrossRefGoogle Scholar
  17. Siesjo, B. K., 1981, Cell damage in the brain: A speculative synthesis, J. Cereb. Blood Flow Metab. 1:155–185.PubMedCrossRefGoogle Scholar
  18. Steen, P. A., Gisvold, S. E., Milde, J. H., Newberg, L. A., Scheithauer, B. W., Lanier, W. L., and Michenfelder, J. D., 1985, Nimodipine improves outcome when given after complete cerebral ischemia in primates, Anesthesiology 62:406–414.PubMedCrossRefGoogle Scholar
  19. Van Belle, H., Wynants, J., Xhonneux, R., and Flameng, W., 1986, Changes in creatine phosphate, inorganic phosphate, and the purine pattern in dog hearts with time of coronary artery occlusion and effect thereon of mioflazine, a nucleoside transport inhibitor, Cardiovasc. Res. 20:658–664.PubMedCrossRefGoogle Scholar
  20. White, B. C., Hildebrandt, J. F., Evans, A. T., Aronson, L., Indrieri, R. J., Hoehner, T., Fox, L., Huang, R., and Johns, D., 1985, Prolonged cardiac arrest and resuscitation in dogs: Brain mitochondrial function with different artificial perfusion methods, Ann. Emerg. Med. 14:383–388.PubMedCrossRefGoogle Scholar
  21. Winegar, C. D., Henderson, O., White, B. C., Jackson, R. E., O’Hara, R., Krause, G. S., Vigor, D. N., Kontry, R., Wilson, W., and Shelby-Lane, C., 1983, Early amelioration of neurologic deficits by lidoflazine after 15 minutes of cardiopulmonary arrest in dogs, Ann. Emerg. Med. 12: 470–476.CrossRefGoogle Scholar
  22. Wolkowicz, P. E., Michael, L. H., Lewis, R., and McMillin-Wood, J., 1983, Sodium-calcium exchange in dog heart mitochondria: Effects of ischemia and verapamil, Am. J. Physiol. 244:H644–H651.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Robert E. Rosenthal
    • 1
  • Gary Fiskum
    • 2
  • Fozia Hamud
    • 3
  1. 1.Department of Emergency MedicineGeorge Washington University School of MedicineUSA
  2. 2.Departments of Biochemistry and Emergency MedicineGeorge Washington University School of Medicine and Health SciencesUSA
  3. 3.Department of BiochemistryGeorge Washington UniversityUSA

Personalised recommendations