Advertisement

Molecular Properties of Dihydropyridine Sensitive Calcium Channels

  • William A. Catterall
  • Michael J. Seagar
  • Masami Takahashi
  • Benson M. Curtis
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

In muscle tissues, voltage-sensitive calcium channels mediate calcium influx during cellular depolarization and play an important role in excitation-contraction coupling (reviewed by Reuter, 1979; Hagiwara and Byerly, 1981). In neurons, they produce action potentials in dendrites (Schwartzkroin and Slawsky, 1977; Llinaset al., 1981) and couple changes in membrane potential at nerve terminals to the release of neurotransmitter (Katz and Miledi, 1969). Multiple classes of calcium channels have been distinguished in neurons (Carbone and Lux, 1984; Armstrong and Matteson, 1985; Nowyckyet al., 1985) and in cardiac muscle cells (Niliuset al., 1985; Bean, 1985). This article focuses on molecular properties of calcium channels that are blocked by dihydropyridine calcium antagonists. These are the most prom inent calcium channels in smooth, cardiac, and skeletal muscle and they are also present in neurons and neurosecretory cells.

Keywords

Calcium Channel Photoaffinity Label Dihydropyridine Receptor Calcium Channel Subunit Phosphatidylcholine Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, C. M., and Matteson, D. R., 1985, Two distinct populations of calcium channels in a clonal line of pituitary cells, Science 227:65–67.PubMedCrossRefGoogle Scholar
  2. Bean, B. P., 1985, Two populations of calcium channels in canine atrial cells, J. Gen. Physiol. 86: 1–30.PubMedCrossRefGoogle Scholar
  3. Bolger, G. T., Gengo, P. J., Luchowki, E. M., Seigel, H., Triggle, D. J., and Janis, R. A., 1982, High affinity binding of a calcium channel antagonist to smooth and cardiac muscle, Biochem. Biophys. Res. Commun. 104:1604–1609.PubMedCrossRefGoogle Scholar
  4. Borsotto, M., Barhanin, J., Norman, R. I., and Lazdunski, M., 1984, Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using (-I-) [3H]PN 200–110, Biochem. Biophys. Res. Commun. 122:1357–1365.PubMedCrossRefGoogle Scholar
  5. Brum, G., Flockerzi, V., Hofmann, F., Osterrieder, W., and Trautwein, W., 1983, Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes, Pflugers Archiv. 398: 147–154.PubMedCrossRefGoogle Scholar
  6. Brunner, J., and Semenza, G., 1981, Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a carbene generating reagent, Biochemistry 20: 7174–7182.PubMedCrossRefGoogle Scholar
  7. Cachelin, A. B., de Peyer, J. E., Kukubun, S., and Reuter, H., 1983, Ca2+ channel modulation by 8-bromocyclic AMP in cultured cells, Nature 304:462–464.PubMedCrossRefGoogle Scholar
  8. Carbone, E., and Lux, H. D., 1984, A low voltage-activated fully inactivating Ca channel in vertebrate sensory neurones, Nature 310:501–502.PubMedCrossRefGoogle Scholar
  9. Catterall, W. A., 1986, Molecular properties of voltage-sensitive sodium channels, Ann. Rev. Biochem. 55:953–985.PubMedCrossRefGoogle Scholar
  10. Curtis, B. M., and Catterall, W. A., 1983, Solubilization of the calcium antagonist receptor from rat brain, J. Biol. Chem. 258:7280–7283.PubMedGoogle Scholar
  11. Curtis, B. M., and Catterall, W. A., 1984, Purification of the calcium antagonist receptor of the voltagesensitive calcium channel from skeletal muscle transverse tubules, Biochemistry 23:2113–2118.PubMedCrossRefGoogle Scholar
  12. Curtis, B. M., and Catterall, W. A., 1985, Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 82:2528–2532.PubMedCrossRefGoogle Scholar
  13. Curtis, B. M., and Catterall, W. A., 1986, Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules, Biochemistry 25:3077–3083.PubMedCrossRefGoogle Scholar
  14. Ferry, D. R., Rombusch, M., Goll, A., and Glossmann, H., 1984, Photoaffinity labelling of Ca2+ channels with [3H]azidopine, FEBS Lett. 169:112–167.PubMedCrossRefGoogle Scholar
  15. Ferry, D. R., Kampf, K., Goll, A., and Glossmann, H., 1985, Subunit composition of skeletal muscle transverse tubule calcium channels evaluated with the 1,4-dihydropyridine photoaffinity probe, [3H]azidopine, EMBO J. 4:1933–1940.PubMedGoogle Scholar
  16. Galizzi, J. P., Borsotto, M., Barhanin, J., Fosset, M., and Lazdunski, M., 1986, Characterization and photoaffinity labeling of receptor sites for the Ca2+ channel inhibitors d-cis-diltiazem, (± )-bepridil, desmethoxyverapamil and ( + ) PN 200–110 in skeletal muscle transverse tubule membranes, J. Biol. Chem. 261:1393–1397.PubMedGoogle Scholar
  17. Garcia, M. L., King, V. F., Siegl, P. K. S., Reuben, J. P., and Kaczorowski, G. J., 1986, Binding of calcium entry blockers to cardiac sarcolemmal membrane vesicles. Characterization of diltiazem-binding sites and their interaction with dihydropyridine and aralkylamine receptors, J. Biol. Chem. 261:8146–8157.PubMedGoogle Scholar
  18. Glossmann, H., and Ferry, D. R., 1983, Solubilization and partial purification of putative calcium channels labelled with [3H]nimodipine, Naunyn-Schmiedeberg’s Arch. Pharmacol. 323:279–291.CrossRefGoogle Scholar
  19. Goldin, A. L., Snutch, T., Lubbert, H., Dowsett, A., Marshall, J., Auld, V., Downey, W., Fritz, L. C., Lester, H. A., Dunn, R., Catterall, W. A., and Davidson, N., 1986, Messenger RNA coding for only the α subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 83:7503–7509.PubMedCrossRefGoogle Scholar
  20. Hagawara, S., and Byerly, L., 1981, Calcium channel, Ann. Rev. Neurosci. 4:69–125.CrossRefGoogle Scholar
  21. Horne, W. A., Weiland, G. A., and Oswald, R. E., 1986, Solubilization and hydrodynamic characterization of the dihydropyridine receptor from rat ventricular muscle, J. Biol. Chem. 261:3588–3594.PubMedGoogle Scholar
  22. Janis, R. A., and Scriabine, A., 1983, Sites of action of Ca2+ channel inhibitors, Biochem. Pharmacol. 32:3499–3507.PubMedCrossRefGoogle Scholar
  23. Katz, B., and Miledi, R., 1969, Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol. 203:459–487.PubMedGoogle Scholar
  24. Kokubun, S., and Reuter, H., 1984, Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells, Proc. Natl. Acad. Sci. USA 81:4824–4827.PubMedCrossRefGoogle Scholar
  25. Llinas, R., Yarom, Y., and Sugimori, M., 1981, Isolated mammalian brain in vitro: New technique for analysis of electrical activity of neuronal circuit function, Fed. Proc. 40:2240–2245.PubMedGoogle Scholar
  26. Murphy, K. M. M., Gould, R. J., Largent, B. L., and Snyder, S. H., 1983, A unitary mechanism of calcium antagonist drug action, Proc. Natl. Acad. Sci. USA 80:860–864.PubMedCrossRefGoogle Scholar
  27. Nilius, B., Hess, P., Lansman, J. B., and Tsien, R. W., 1985, A novel type of cardiac calcium channel in ventricular cells, Nature 316:443–446.PubMedCrossRefGoogle Scholar
  28. Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M., and Numa, S., 1986, Expression of functional sodium channels from cloned cDNA, Nature 322:826–828.PubMedCrossRefGoogle Scholar
  29. Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1985, Three types of neuronal calcium channel with different calcium agonist sensitivity, Nature 316:440–443.PubMedCrossRefGoogle Scholar
  30. Reber, B. F. X., and Catterall, W. A., 1987, Hydrophobie properties of the ß1 and ß2 subunits of the rat brain sodium channel, J. Biol. Chem. 262:11369–11374.PubMedGoogle Scholar
  31. Reuter, H., 1974, Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle, J. Physiol. (London) 242:429–451.Google Scholar
  32. Reuter, H., 1979, Properties of two inward membrane currents in the heart, Ann. Rev. Physiol. 41: 413–424.CrossRefGoogle Scholar
  33. Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes and drugs, Nature 301: 569–574.PubMedCrossRefGoogle Scholar
  34. Schmid, A., Renaud, J.-F., Lazdunski, M., 1985, Short term and long term effects of ß-adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle, J. Biol. Chem. 260:13041–13046.PubMedGoogle Scholar
  35. Schmid, A., Barhanin, J., Coppola, T., Borsotto, M., and Lazdunski, M., 1986, Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage dependent Ca+ + channels in skeletal, cardiac and smooth muscle, Biochemistry 25:3492–3495.PubMedCrossRefGoogle Scholar
  36. Schramm, M., Thomas, G., Towart, R., Franckowiak, G., 1983, Novel dihydropyridines with a positive inotropic action through activation of Ca2+ channels, Nature 303:535–537.PubMedCrossRefGoogle Scholar
  37. Schwartzkroin, P. A., and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135:157–161.PubMedCrossRefGoogle Scholar
  38. Seagar, M. J., Labbe-Julle, C., Granier, C., Goll, A., Glossmann, H., Van Reitschoten, J., and Couraud, F., 1986, Molecular structure of the rat brain apamin receptor: Differential photoaffinity labeling of putative K+ channel subunits and target size analysis, Biochemistry 25:4051–4057.PubMedCrossRefGoogle Scholar
  39. Striessnig, J., Moosburger, K., Goll, A., Ferry, D. R., and Glossmann, H., 1986, Stereoselective photoaffinity labeling of the purified 1,4-dihydropyridine receptor of the voltage dependent calcium channel, Eur. J. Biochem. 161:603–609.PubMedCrossRefGoogle Scholar
  40. Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X., and Catterall, W. A., 1987, Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle, Proc. Natl. Acad. Sci. USA 84:5478–5482.PubMedCrossRefGoogle Scholar
  41. Talvenheimo, J. A., Tamkun, M. M., and Catterall, W. A., 1982, Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain, J. Biol. Chem. 257:11868–11871.PubMedGoogle Scholar
  42. Triggle, D. J., 1982, Biochemical pharmacology of calcium blockers, in: Calcium Blockers: Mechanism of Actions and Clinical Applications (S. F. Flaim and R. Zelis, eds.), Urban and Schwarzenberg, Baltimore, pp. 121–134.Google Scholar
  43. Tsien, R. W., Giles, W., and Greengard, P., 1972, Cyclic-AMP mediates the action of epinephrine on the action potential plateau of cardiac Purkinje fibers, Nature New Biol. 240:181–183.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • William A. Catterall
    • 1
  • Michael J. Seagar
    • 1
  • Masami Takahashi
    • 1
    • 2
  • Benson M. Curtis
    • 1
  1. 1.Department of PharmacologyUniversity of WashingtonSeattleUSA
  2. 2.Mitsubishi, Kasei Institute of Life SciencesMachida-ShiJapan

Personalised recommendations