Advertisement

Mechanisms of Anoxic Injury to Transport and Metabolism of Proximal Renal Tubules

  • Lazaro J. Mandel
  • William R. Jacobs
  • Rick Schnellmann
  • Maria Sgambati
  • Ann LeFurgey
  • Peter Ingram
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

The pathological effects of ischemia have been extensively studied in the kidney (e.g., Venkatachalamet al., 1978; Trumpet al., 1982; Johnstonet al., 1984). By subjecting the kidney to ischemia of varying duration, investigators have been able to describe the many morphological, physiological, and biochemical alterations that occur in the kidney as a function of time. Upon deprivation of oxygen, proximal tubules rapidly lose K, gain Na, and decrease their ATP content. Within 15 min of clamp-induced ischemia, structural alterations are clearly observed in the form of cellular and mitochondrial swelling and irregular brush borders. At the same time, mitochondrial dysfunctions are clearly discernible (Kahnget al., 1978).

Keywords

Adenine Nucleotide Proximal Renal Tubule Electron Probe Analysis Urinary Bladder Epithelial Cell Adenine Nucleotide Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaban, R. S., Soltoff, S., Storey, J. M., and Mandel, L. J., 1980, Improved renal cortical tubule suspension: Spectrophotometric study of O2 delivery, Am. J. Physiol. 238:F50–F59.PubMedGoogle Scholar
  2. Borle, A. B., Freudenrich, C. C., and Snowdowne, K. W., 1986, A simple method for incorporating aequorin into mammalian cells, Am. J. Physiol. 251:C323–C326.PubMedGoogle Scholar
  3. Färber, J. L., 1988, Calcium and ischemic cell injury, this volume.Google Scholar
  4. Goligorsky, M. S., Huskey, M., Loftus, D. J., and Hruska, K. A., 1987, Anoxia and re-oxygenation: Cytosolic calcium in individual proximal tubular cells. Abstracts, Cell Calcium Metabolism 87 (G. Fiskum, ed.), no. 77.Google Scholar
  5. Harris, S. I., Balaban, R. S., Barrett, L., and Mandel, L. J., 1981, Mitochondrial respiratory capacity and Na + -and K +-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell, J. Biol. Chem. 256:10319–10328.PubMedGoogle Scholar
  6. Jacobs, W. R., and Mandel, L. J., 1987a, Fluorescent measurements of intracellular free calcium in isolated toad urinary bladder epithelial cells, J. Membrane Biol. 97:53–62.CrossRefGoogle Scholar
  7. Jacobs, W. R., and Mandel, L. J., 1987b, Role of cytosolic free calcium in renal tubule damage during anoxia, Abstract, 20th Annual Meeting, Am. Soc. Nephrol.Google Scholar
  8. Johnston, P. A., Rennke, H., and Levinsky, N. G., 1984, Recovery of proximal tubular function from ischemic injury, Am. J. Physiol. 246:F159–F166.PubMedGoogle Scholar
  9. Kahng, M. W., Berezesky, I. K., and Trump, B. F., 1978, Metabolic and ultrastructural response of rat kidney cortex to in vitro ischemia, Exp. Mol. Pathol. 29:183–198.PubMedCrossRefGoogle Scholar
  10. Kitazawa, T., Shuman, H., and Somlyo, A. P., 1983, Quantitative electron probe analysis: Problems and solutions, Ultramicroscopy 11:251–262.CrossRefGoogle Scholar
  11. LeFurgey, A., Ingram, P., and Mandel, L. J., 1986, Heterogeneity of calcium compartmentation: Electron probe analysis of renal tubules. J. Membrane Biol. 94:191–196.CrossRefGoogle Scholar
  12. Lemasters, J. J., DiGuiseppi, J., Nieminen, A.-L., and Herman, B., 1987, Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes, Nature 325:78–81.PubMedCrossRefGoogle Scholar
  13. Mandel, L. J., Takano, T., Soltoff, S. P., and Murdaugh, S., 1988, Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia, J. Clin. Invest. 81:1255–1264.PubMedCrossRefGoogle Scholar
  14. Meister, A., and Anderson, M. E., 1983, Glutathione, Ann. Rev. Biochem. 52:711–760.PubMedCrossRefGoogle Scholar
  15. Somlyo, A. P., Somlyo, A. V., Shuman, H., Sloane, B., and Scarpa, A., 1978, Electron probe analysis of calcium compartments in cryosections of smooth and striated muscle, Ann. N. Y. Acad. Sci. 307:523–544.PubMedCrossRefGoogle Scholar
  16. Takano, T., Soltoff, S. P., Murdaugh, S., and Mandel, L. J., 1985, Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules, J. Clin. Invest. 76:2377–2384.PubMedCrossRefGoogle Scholar
  17. Trump, B. F., and Berezesky, I. K., 1988, The role of ion regulation in cell injury, cell death and carcinogenesis, Chap. 46 in this volume.Google Scholar
  18. Trump, B. F., Berezesky, I. K., and Cowley, R. A., 1982, The cellular and subcellular characteristics of acute and chronic injury with emphasis on the role of calcium, in: Pathophysiology of Shock, Anoxia, and Ischemia (R. A. Cowley and B. F. Trump, eds.), Williams &Wilkins, Baltimore, pp. 6–46.Google Scholar
  19. Venkatachalam, M. A., Bernard, D. B., Donohoe, J. F., and Levinsky, N. G., 1978, Ischemic damage and repair in the rat proximal tubule: Differences among the S1, S2 and S3 segments, Kidney Int. 14:31–49.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Lazaro J. Mandel
    • 1
  • William R. Jacobs
    • 1
  • Rick Schnellmann
    • 1
  • Maria Sgambati
    • 1
  • Ann LeFurgey
    • 2
  • Peter Ingram
    • 3
  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.Department of PhysiologyDuke University Medical CenterDurhamUSA
  3. 3.Research Triangle InstituteResearch Triangle ParkUSA

Personalised recommendations