Advertisement

Origin and Role of Calcium in Platelet Activation-Contraction-Secretion Coupling

  • Gundu H. R. Rao
  • Jonathan M. Gerrard
  • Isaac Cohen
  • Carl J. WitkopJr.
  • James G. White
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Agonist interaction with platelet surface receptors initiates a complex but concerted series of events inducing alterations in morphology, biochemistry, and physiology (White, 1968; Marcus, 1978; Holmsen and Weiss, 1979; Zucker and Nachmias, 1985). Intracellular move ments of calcium ions accompany and may play a critical role in regulating these biochemical and physiological processes (Statlandet al., 1969; Feinman and Detwiler, 1974; Hathaway and Adelstein, 1979; Feinstein, 1980; Gerrardet al., 1981; Foxet al., 1983; Menahsiet al., 1984). For lack of precise methods to monitor intracellular free calcium, earlier studies relied heavily on indirect methods to demonstrate agonist-induced calcium mobilization. However, synthesis of novel calcium indicators has made it possible to demonstrate agonistinduced calcium mobilization concurrent with cell activation (Rinket al., 1982; Grynkiewiczet al., 1985; Raoet al., 1985a,b).

Keywords

Dense Body Cytosolic Calcium Irreversible Aggregation Clot Retraction Platelet Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnke, O., 1967, Electron microscopic observations on the membrane systems of the rat blood platelet, Anat. Rec. 158:121–137.PubMedCrossRefGoogle Scholar
  2. Brass, L. F., and Shattil, S. J., 1982, Changes in surface-bound and exchangeable calcium during platelet activation, J. Biol. Chem. 257:14000–16005.PubMedGoogle Scholar
  3. Budtz-Olsen, O. E., 1951, Clot Retraction ,Charles C Thomas, Springfield, IL.Google Scholar
  4. Charo, I. F., Feinman, R. D., Detwiler, T. C., 1976, Inhibition of platelet secretion by an antagonist of intracellular calcium, Biochem. Biophys. Res. Commun. 72:1462–1467.PubMedCrossRefGoogle Scholar
  5. Cohen, I., Gerrard, J. M., and White, J. G., 1982, Ultrastructure of clots during isometric contraction, 7. Cell Biol. 93:775–787.Google Scholar
  6. Costa, J. L., Detwiler, T. C., Feinman, R. D., Murphy, D. L., Patlak, C. S., and Pettigrew, K. D., 1977, Quantitative evaluation of the loss of human platelet dense bodies following stimulation by thrombin or A23187, J. Physiol. 264:297–306.PubMedGoogle Scholar
  7. Detwiler, T. L., Charo, I. F., and Feinman, R. D., 1978, Evidence that calcium regulates platelet function, Thromb. Haemost. 404:207–211.Google Scholar
  8. Feinman, R. D., and Detwiler, T. C., 1974, Platelet secretion induced by divalent cation ionophores, Nature 249:172–173.PubMedCrossRefGoogle Scholar
  9. Feinstein, M. D., 1980, Release of intracellular membrane-bound calcium precedes the onset of stimulus induced exocytosis in platelets, Biochem. Biophys. Res. Commun. 93:593–600.PubMedCrossRefGoogle Scholar
  10. Feinstein, M. B., and Walenga, R. W., 1981, The role of calcium in platelet activation, In.: Biochemistry of the Acute Allergic Reactions (E. Becker, A. Simon, and K. Austen, eds.), Alan R. Liss, New York, pp. 279–306.Google Scholar
  11. Fox, J. E. B., Reynolds, C. C., Phillips, D. R., 1983, Calcium-dependent proteolysis occurs during platelet aggregation, J. Biol. Chem. 258:9973–9981.PubMedGoogle Scholar
  12. Gerrard, J. M., Peterson, D. A., and White, J. G., 1981, Calcium mobilization, in: Platelets in Biology and Pathology (J. Gordon, ed.), Elsevier Oxford, pp. 407–436.Google Scholar
  13. Gerrard, J. M., Phillips, D. R., Rao, G. H. R., Plow, E. F., Walz, D. A., Ross, R., Harker, L. A., and White, J. G., 1980, Biochemical studies of two patients with the gray-platelet syn drome-selective deficiency of platelet alpha granules, J. Clin. Invest. 66:102–109.PubMedCrossRefGoogle Scholar
  14. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  15. Hallam, T. J., Sanchez, A., and Rink, T. J., 1984, Stimulus-response coupling in human platelets, Biochem. J. 218:819–827.PubMedGoogle Scholar
  16. Hardisty, R. M., Powling, J., Nokes, T. J. C., Patrick, A. D., and Srivastava, P. C., 1985, Gray platelet syndrome: New biochemical and functional studies, Thromb. Haemostas. 54:73.Google Scholar
  17. Hathaway, B. R., and Adelstein, R. S., 1979, Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for reactivity, Proc. Natl. Acad. Sci. USA 76:1653–1657.PubMedCrossRefGoogle Scholar
  18. Holmsen, H., and Weiss, H. J., 1979, Secretable storage pools in platelets, Ann. Rev. Med. 30:119–134.PubMedCrossRefGoogle Scholar
  19. Jennings, L. K., and Phillips, D. R., 1982, Purification of glycoproteins IIb and IIIa from human platelet plasma membranes and characterization of a calcium dependent glycoprotein lib Ilia complex, J. Biol. Chem. 257:10466–10658.Google Scholar
  20. Luscher, E. F., Massini, P., and Kaser-Glanzmann, R., 1980, The role of calcium in the induction of platelet activities, in: Cellular Mechanisms and Their Biological Significance (A. Rotman, F. A. Meyer, C. Giltler, A. Sildberg, eds.), J. Wiley and Sons, New York, London, pp. 67–77.Google Scholar
  21. Marcus, A. J., 1978, The role of lipids in platelet function with particular reference to the arachidonic acid pathway, J. Lipid Res. 19:793–826.PubMedGoogle Scholar
  22. Massini, P., Kaser-Glanzmann, R., and Luscher, E. F., 1978, Movement of calcium ions and their role in the activation of platelets, Thromb. Haemost. 40:212–218.PubMedGoogle Scholar
  23. McGill, M., 1980, Inhibition of mitochondrial-specific protein synthesis in human lymphocytes and platelets is dependent upon the site of cellular differentiation, Cytogenet. Cell Genet. 26:117–126.PubMedCrossRefGoogle Scholar
  24. Menashi, S., Authi, K. S., Carey, F., and Crawford, N., 1984, Characterization of the calcium sequestering process associated with human platelet intracellular membranes isolated by free flow electrophoresis, Biochem. J. 222:413–417.PubMedGoogle Scholar
  25. Menashi, S., Davis, C., and Crawford, N., 1982, Calcium uptake associated with human platelet intracellular membranes isolated by free flow electrophoresis, FEBS Lett. 140:298–302.PubMedCrossRefGoogle Scholar
  26. Murer, E. H., 1985, The role of platelet calcium, Sem. Hematol. 22:313–323.Google Scholar
  27. Owen, N. E., Feinberg, H., and LeBreton, G. C., 1980, Epinephrine induces Ca2+ uptake in human blood platelets, Am. J. Physiol. 239:H483–H488.PubMedGoogle Scholar
  28. Owen, N. E., LeBreton, G. C., 1981, Ca2+ mobilization in blood platelets as visualized by chlortet-racycline fluorescence, Am. J. Physiol. 241:H613–H619.PubMedGoogle Scholar
  29. Purdon, D. A., Daniel, J. L., Stewart, G. J., and Holmsen, H., 1984, cytoplasmic free calcium concentration in porcine platelets. Regulation of an intracellular nonmitochondria calcium pump and increase after thrombin stimulation, Biochem. Biophys. Acta 800:178.PubMedCrossRefGoogle Scholar
  30. Rao, G. H. R., and White, J. G., 1985a, Role of arachidonic acid metabolism in human platelet activation and irreversible aggregation, Am. J. Hematol. 19:339–347.PubMedCrossRefGoogle Scholar
  31. Rao, G. H. R., and White, J. G., 1985b, Disaggregation and reaggregation of “irreversibly” aggregated platelets: A method for more complete evaluation of anti-platelet drugs, Agents and Actions 16: 425–434.PubMedCrossRefGoogle Scholar
  32. Rao, G. H. R., Peller, J. D., and White, J. G., 1985, Measurement of ionized calcium in blood platelets with a new generation of calcium indicator, Biochem. Biophys. Res. Commun. 132:652–657.PubMedCrossRefGoogle Scholar
  33. Rao, G. H. R., Peller, J. D., Semba, C. P., and White, J. G., 1986, Influence of the calcium sensitive fluorophore Quin 2 on platelet function, Blood 67:356–361.Google Scholar
  34. Rao, G. H. R., Reddy, K. R., and White, J. G., 1981, Modification of human platelet response to sodium arachidonate by membrane modulation, Prost. Med. 6:75–90.CrossRefGoogle Scholar
  35. Rink, T. J., Smith, S. W., and Tsien, R. Y., 1982, Intracellular free calcium in platelet shape change and aggregation, J. Physiol. 324:53P–54P.Google Scholar
  36. Schneider, A. S., Herz, R., and Sonenberg, M., 1983, Chlortetracycline as a probe of membrane associated calcium and magnesium: Interaction with red cell membranes, phospholipids, and pro teins monitored by fluorescence and circular dichroism, Biochemistry 22:1680–1686.PubMedCrossRefGoogle Scholar
  37. Somlyo, A. P., Somlyo, A. V., Schulman, H., Sloane, B., and Scrapa, A., 1978, Electron probe analysis of calcium compartments in cryosections of smooth and striated muscles, Ann. N.Y. Acad. Sci. 307:523–566.PubMedCrossRefGoogle Scholar
  38. Statland, B., Heagan, B., and White, J. G., 1969, Uptake of calcium by platelet relaxing factor, Nature 223:521.PubMedCrossRefGoogle Scholar
  39. Steiner, B., Luscher, E. F., 1985, Evidence that the platelet plasma membranes do not contain a (Ca2+ + Mg2+ -dependent ATPase, Biochim. Biophys. Acta 818:299–309.PubMedCrossRefGoogle Scholar
  40. Takeo, S., and Sakanashi, M., 1985, Calcium accumulating ability of mitochondria from bovine coronary artery: Comparison with aortic mitochondria, Jpn. Heart J. 26:91–103.PubMedCrossRefGoogle Scholar
  41. Thompson, N. T., and Scrutton, M. C., 1985, Intracellular calcium fluxes in human platelets, Eur. J. Biochem. 147:421–427.PubMedCrossRefGoogle Scholar
  42. White, J. G., 1968, Fine structural alterations induced in platelets by adenosine diphosphate, Blood 31: 604–622.PubMedGoogle Scholar
  43. White, J. G., 1979, Ultrastructural studies of the gray platelet syndrome, Am. J. Pathol. 95:445–462.PubMedGoogle Scholar
  44. White, J. G., 1981, Is the canalicular system the equivalent of the muscle sarcoplasmic reticulum? Haemostasis 4:185–191.Google Scholar
  45. White, J. G., 1983, The morphology of platelet function, in: Methods in Hematology, Series 8: Measurements of Platelet Function (W. A. Harkerand T. S. Zimmerman, eds.), Churchill-Livingstone, New York, pp. 1–25.Google Scholar
  46. White, J. G., and Witkop, C. J., Jr., 1972, Effects of normal and aspirin platelets on defective secondary aggregation in the Hermansky-Pudlak syndrome: A test for storage pool deficient platelets, Am. J. Pathol. 68:57–66.PubMedGoogle Scholar
  47. White, J. G., Rao, G. H. R., and Gerrard, J. M., 1974, Effects of the ionophore A23187 on blood platelets. I. Influence on aggregation and secretion, Am. J. Pathol. 77:135–149.PubMedGoogle Scholar
  48. White, J. G., Edson, J. R., Desnick, S. J., Witkop. C. J., 1971, Studies of platelets in a variant of the Hermansky-Pudlak syndrome. Am. J. Pathol. 63:319–332.PubMedGoogle Scholar
  49. Zucker, M. B., and Borelli, J., 1981, Some effects of divalent cations on the clotting mechanisms and the platelets of EDTA blood, J. Appl. Physiol. 12:453–460.Google Scholar
  50. Zucker, M. B., and Grant, R. A., 1978, Nonreversible loss of platelet aggregability induced by calcium deprivation, Blood 52:505–514.PubMedGoogle Scholar
  51. Zucker, M. B., and Nachmias, V. T., 1985, Platelet activation, Arteriosclerosis 5:1–18.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Gundu H. R. Rao
    • 1
  • Jonathan M. Gerrard
    • 2
  • Isaac Cohen
    • 3
  • Carl J. WitkopJr.
    • 4
  • James G. White
    • 1
  1. 1.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of PediatricsUniversity of ManitobaWinnepegCanada
  3. 3.Artherosclerosis Research LaboratoryNorthwestern UniversityChicagoUSA
  4. 4.Department of Human and Oral GeneticsUniversity of Minnesota School of DentistryMinneapolisUSA

Personalised recommendations