Role of Calcium in the Regulation of Mammalian Lipoxygenases

  • Becky M. Vonakis
  • Jack Y. Vanderhoek
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Arachidonic acid is the precursor to a variety of oxygenated metabolites that have been implicated as regulators of various cell functions. The prostanoids are one group of metab olites that are formed from arachidonic acid via the cyclooxygenase pathway. Arachidonic acid metabolism catalyzed by the lipoxygenase pathway, which produces metabolites such as hydroperoxyeicosatetraenoic acids (HPETEs), the corresponding hydroxy analogs (HETEs), leukotrienes (LTs), and lipoxins (Pace-Asciak and Smith, 1983), will be the focus of this paper. Our laboratory as well as others has shown that the HETEs can modulate cellular lipoxygenase, cyclooxygenase, and phospholipase activities (Vanderhoek, 1985). LTB4causes leukocyte adhesion, degranulation and chemotaxis of neutrophils while LTC4, LTD4, and LTE4, which are released during an anaphylactic reaction, cause broncho-and vasoconstriction and an increase in vascular permeability (Samuelsson, 1983). Lipoxin A causes a contraction of bronchial smooth muscle while lipoxins A and B can inhibit natural killer cell function without preventing natural killer cell binding to target cells (Samuelsson, 1987).


Arachidonic Acid Phorbol Myristate Acetate Cytosolic Calcium Level Exogenous Arachidonic Acid Hydroperoxyeicosatetraenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borgeat, P., and Samuelsson, B., 1979a, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187, Proc. Natl. Acad. Sci. USA 76:2148–2152.PubMedCrossRefGoogle Scholar
  2. Borgeat, P., and Samuelsson, B., 1979b, Transformation of arachidonic acid by rabbit polymorpho nuclear leukocytes, J. Biol. Chem. 254:2643–2646.PubMedGoogle Scholar
  3. Brand, M. D., and Felber, S. M., 1984, The intracellular calcium antagonist TMB-8 [8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate] inhibits mitochondrial ATP production in rat thymocytes, Biochem. J. 224:1027–1030.PubMedGoogle Scholar
  4. Capasso, F., Tavares, I. A., Tsang, R., and Bennett, A., 1985, The role of calcium in eicosanoid production induced by ricinoleic acid or the calcium ionophore A23187, Prostaglandins 30:119–124.PubMedCrossRefGoogle Scholar
  5. Chan, K. M., and Turk, J., 1987, Mechanism of arachidonic acid-induced Ca2+ mobilization from rat liver microsomes, Biochim. Biophys. Acta 928:186–193.PubMedCrossRefGoogle Scholar
  6. Chiou, C. Y., and Malagodi, M. H., 1975, Studies on the mechanism of action of a new Ca2+ antagonist, 8-(N,N,diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles, Br. J. Pharmac. 53:279–285.Google Scholar
  7. Flatman, S., Hurst, J. S., McDonald-Gibson, R. G., Jonas, G. E. G., and Slater, T. F., 1986, Biochemical studies on a 12-lipoxygenase in human uterine cervix, Biochim. Biophys. Atta 883:7–14.CrossRefGoogle Scholar
  8. Furukawa, M., Yoshimoto, T., Ochi, K., and Yamamoto, S., 1984, Studies on arachidonate 5-lipoxygenase of rat basophilic leukemia cells, Biochim. Biophys. Ada 795:458–465.Google Scholar
  9. Goetze, A. M., Fayer, L., Bouska, J., Bornemeier, D., and Carter, G., 1985, Purification of a mammalian 5-lipoxygenase from rat basophilic leukemia cells, Prostaglandins 29:689–701.PubMedCrossRefGoogle Scholar
  10. Grynkiewicz, G., Poenie, M., and Tsien, T., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  11. Hamasaki, Y. and Tai, H., 1984, Calcium stimulation of a novel 12-lipoxygenase from rat basophilic leukemia (RBL-1) cells, Biochim. Biophys. Ada 793:393–398.Google Scholar
  12. Hansson, A., Serhan, C., Haeggstrom, J., Ingelman-Sundberg, M., and Samuelsson, B., 1986, Ac-tivation of protein kinase C by lipoxin A and other eicosanoids: Intracellular action of oxygenation products of arachidonic acid, Biochem. Biophys. Res. Commun. 134:1215–1222.PubMedCrossRefGoogle Scholar
  13. Hogaboom, K. G., Cook, M., Newton, J. F., Varrichio, A., Shorr, R. G. L., Sarau, H. M., and Crooke, S. T., 1986, Purification, characterization, and structural properties of a single protein from rat basophilic leukemia (RBL-1) cells possessing 5-lipoxygenase and leukotriene A4 synthetase activities, Molec. Pharm. 30:510–519.PubMedGoogle Scholar
  14. Jakschik, B. A., Sun, F. F., Lee, L., and Steinhoff, M. M., 1980, Calcium stimulation of a novel lipoxygenase, Biochem. Biophys. Res. Commun. 95:103–109.PubMedCrossRefGoogle Scholar
  15. Maclouf, J., de la Baume, H., Levy-Toledano, S., and Caen, J., 1982, Selective stimulation of human platelet lipoxygenase product 12-hydroxy-5,8,10,14-eicosatetraenoic acid by chlorpromazine and 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate, Biochim. Biophys. Acta 711:377–385.PubMedGoogle Scholar
  16. Musch, M. W., Bryant, R. W., Coscolluela, C., Myers, R. F., and Siegel, M. I., 1985, Ionophorestimulated lipoxygenase activity and histamine release in a cloned murine mast cell, MC9, Pros taglandins 29:405–430.Google Scholar
  17. Naccache, P. H., Sha’afi, R. I., Borgeat, P., and Goetzl, E. J., 1981, Mono-and dihydroxyeicosatetraenoic acids alter calcium homeostasis in rabbit neutrophils, J. Clin. Invest. 67:1584–1587.PubMedCrossRefGoogle Scholar
  18. Narumiya, S., Salmon, J., Cottee, F., Weatherley, B., and Flower, R., 1981, Arachidonic acid 15 lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes: Partial purification and prop erties, J. Biol. Chem. 259:9583–9592.Google Scholar
  19. Ochi, K., Yoshimoto, T., Yamamoto, S., Taniguchi, K., and Miyamoto, T., 1983, Arachidonate 5 lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes: Activation by adenosine 5’ triphosphate, J. Biol. Chem. 258:5754–5758.PubMedGoogle Scholar
  20. Pace-Asciak, C. R., and Smith, W. L., 1983, Enzymes in the biosynthesis and catabolism of the eicosanoids: Prostaglandins, thromboxanes, leukotrienes and hydroxy fatty acids, in: The Enzymes ,Vol. 16, Academic Press, New York, 1983, pp. 543–603.Google Scholar
  21. Parker, C. W., and Aykent, S., 1982, Calcium stimulation of the 5-lipoxygenase from RBL-1 cells, Biochem. Biophys. Res. Commun. 109:1011–1016.PubMedCrossRefGoogle Scholar
  22. Rouzer, C. A., Matsumoto, T., and Samuelsson, B., 1986, Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities, Proc. Natl. Acad. Sci. USA 83:857–861.PubMedCrossRefGoogle Scholar
  23. Samuelsson, B., 1983, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220:568–575.PubMedCrossRefGoogle Scholar
  24. Samuelsson, B., 1987, An elucidation of the arachidonic acid cascade: Discovery of prostaglandins, thromboxane and leukotrienes, Drugs 33:2–9.Google Scholar
  25. Shimizu, T., Izumi, T., Seyama, Y., Tadokoro, K., Radmark, O., and Samuelsson, B., 1986, Characterization of leukotriene A4 synthase from murine mast cells: Evidence for its identity to arachidonate 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 83:4175–4179.PubMedCrossRefGoogle Scholar
  26. Skoog, M. T., Nichols, J. S., and Wiseman, J. S., 1986, 5-Lipoxygenase from rat PMN lysate, Prostaglandins 31:561–576.PubMedCrossRefGoogle Scholar
  27. Soberman, R. J., Harper, T. W., Betteridge, D., Lewis, R. A., and Austen, K. F., 1985, Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid n-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes, J. Biol. Chem. 260:4508–4515.PubMedGoogle Scholar
  28. Tripp, C. S., Mahoney, M., and Needleman, P., 1985, Calcium ionophore enables soluble agonists to stimulate macrophage 5-lipoxygenase, J. Biol. Chem. 260:5895–5898.PubMedGoogle Scholar
  29. Ueda, N., Kaneko, S., Yoshimoto, T., and Yamamoto, S., 1986, Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids, J. Biol. Chem. 261:7982–7988.PubMedGoogle Scholar
  30. Vanderhoek, J. Y., Tare, N. S., Bailey, J. M., Goldstein, A. L., and Pluznik, D. H., 1982, New role for 15-hydroxyeicosatetraenoic acid: Activator of leukotriene biosynthesis in PT-18 mast/basophil cells, J. Biol. Chem. 257:12191–12195.PubMedGoogle Scholar
  31. Vanderhoek, J. Y., 1985, Biological effects of hydroxy fatty acids, in Biochemistry of Arachidonic Acid Metabolism (W. E. M. Lands, ed.), Martinus Nijhoff, Boston, pp. 213–226.CrossRefGoogle Scholar
  32. Vanderhoek, J. Y., and Bailey, J. M., 1985, Postphospholipase activation of lipoxygenase/leukotriene systems, in Prostaglandins, Leukotrienes, and Lipoxins (J. M. Bailey, ed.), Plenum Press, New York, pp. 133–146.Google Scholar
  33. Vanderhoek, J. Y., Karmin, M. T., and Ekborg, S. L., 1985, Endogenous hydroxyeicosatetraenoic acids stimulate the human polymorphonuclear leukocyte 15-lipoxygenase pathway, J. Biol. Chem. 260:15482–15487.PubMedGoogle Scholar
  34. Vanderhoek, J. Y., and Pluznik, D. H., 1985, Structural requirements in hydroxyeicosanoids for the activation of the 5-lipoxygenase in PT-18 mast/basophil cells, Biochim. Biophys. Acta 837:119–122.PubMedGoogle Scholar
  35. Walker, J. R., and Parish, H. A., 1981, Metabolic requirements for rabbit polymorphonuclear leucocyte lipoxygenase activity, Inter. Archs. Allergy Appl. Immun. 66:83–90.CrossRefGoogle Scholar
  36. Wolf, B. A., Turk, J., Sherman, W. R., and McDaniel, M. L., 1986, Intracellular Ca2+ mobilization by arachidonic acid: Comparison with myo-inositol 1,4,5-triphosphate in isolated pancreatic islets, J. Biol. Chem. 261:3501–3511.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Becky M. Vonakis
    • 1
  • Jack Y. Vanderhoek
    • 1
  1. 1.Department of BiochemistryThe George Washington University School of Medicine and Health SciencesUSA

Personalised recommendations