Calcium, Calmodulin, and Insulin Action in the Adipocyte

  • Jay M. McDonald
  • Joseph P. Laurino
  • Jerry Colca
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The cellular mechanism of insulin action remains enigmatic despite intensive research efforts. Over the past 20 years, considerable effort has focused on the signal transduction mechanisms that are responsible for linking the primary signal (insulin binding to its specific receptor on the cell surface) to the characteristic multicomponent pleiotypic cellular response (for re views, see Czech, 1977, 1985). Although considerable evidence supports the concept that the final common pathway by which insulin regulates a variety of intracellular target pathways is the phosphorylation and dephosphorylation of key intracellular target proteins, the signal transduction processes remain unknown. Clearly, the complexity of the metabolic responses of the cell to insulin accompanied by our increasing knowledge about intracellular signals and mediators lend considerable support to the contention that the signal transduction process for insulin most assuredly involves multiple “mediator” pathways acting in a coordinated, orchestrated manner rather than a single mediator or messenger.


Insulin Receptor Insulin Action Insulin Binding Signal Transduction Process Stimulate Glucose Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Christensen, R. L., Shade, D. L., Graves, C. B., and McDonald, J. M., 1987, Evidence that protein kinase C is involved in regulating glucose transport in the adipocyte, Int. J. Biochem. 19:259–265.PubMedCrossRefGoogle Scholar
  2. Colca, J. R., DeWald, D. B., Pearson, J. D., Palazuk, B. J., Laurino, J. P., and McDonald, J. M., 1987, Insulin stimulates the phosphorylation of calmodulin in intact adipocytes, J. Biol. Chem. 262:11399–11402.PubMedGoogle Scholar
  3. Czech, M. P. (ed.), 1985, Molecular Basis of Insulin Action ,Plenum Press, New York.Google Scholar
  4. Czech, M. P., 1977, Molecular basis of insulin action, Ann. Rev. Biochem. 46:359–384.PubMedCrossRefGoogle Scholar
  5. Draznin, B., Kao, M., Sussman, K. E., 1987, Insulin and glyburide increase cytosolic free Ca2+ concentration in isolated rat adipocytes, Diabetes 36:174–178.PubMedCrossRefGoogle Scholar
  6. Fukami, Y., Nakamura, T., Nakayama, A., and Kanehisa, T., 1986, Phosphorylation of tyrosine residues of calmodulin in Rous sarcoma virus-transformed cells, Proc. Natl. Acad. Sci. USA 83:4190–4193.PubMedCrossRefGoogle Scholar
  7. Glynn, B. P., Collieton, J. W., McDermott, J. M., and Witters, L. A., 1986, Phorbol esters, but not insulin, promote depletion of cytosolic protein kinase C in rat adipocytes, Biochem. Biophys. Res. Commun. 135:1119–1125.CrossRefGoogle Scholar
  8. Goewert, R. R., Klaven, N. B., and McDonald, J. M., 1983, Direct effect of insulin on the binding of calmodulin to rat adipocyte plasma membranes, J. Biol. Chem. 258:9995–9999.PubMedGoogle Scholar
  9. Graves, C. B., Gale, R. D., Laurino, J. P., and McDonald, J. M., 1986, The insulin receptor and calmodulin: Calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin, J. Biol. Chem. 261:10429–10438.PubMedGoogle Scholar
  10. Graves, C. B., Goewert, R. R., and McDonald, J. M., 1985, The insulin receptor contains a calmodulin binding domain, Science 230:827–829.PubMedCrossRefGoogle Scholar
  11. Graves, C. B., and McDonald, J. M., 1985a, Insulin and phorbol ester stimulate phosphorylation of a 40-kDa protein in adipocyte plasma membranes, J. Biol. Chem. 260:11286–11292.PubMedGoogle Scholar
  12. Graves, C. B., and McDonald, J. M., 1985b, Effects of Ca2+ and calmodulin on endogenously catalyzed ADP-ribosylation in adipocyte plasma membranes, Cell Calcium 6:491–501.PubMedCrossRefGoogle Scholar
  13. Haring, H. U., White, M. F., Kahn, C. R., Ahmed, Z., DePooli-Roach, A. A., and Roach, P., 1985, Interaction of the insulin receptor kinase with serine/threonine kinases in vitro, J. Cell Biochem. 28:171–182.PubMedCrossRefGoogle Scholar
  14. Ishibashi, F., and Kubo, K., 1984, Inhibition of calcium antagonist of coupling of insulin binding and insulin action on glucose transport in isolated fat cells, Hiroshima J. Med. Sci. 33:73–79.Google Scholar
  15. Kirsch, D., Obermaier, B., and Haring, H. U., 1985, Phorbol esters enhance basal D-glucose transport but inhibit stimulation of D-glucose transport and insulin binding in isolated rat adipocytes, Biochem. Biophys. Res. Commun. 128:824–832.PubMedCrossRefGoogle Scholar
  16. Klip, A., 1984, Is intracellular Ca2+ involved in insulin stimulation of sugar transport? Fact and prejudices, Can. J. Biochem. Cell. Biol. 62:1228–1236.PubMedCrossRefGoogle Scholar
  17. Laurino, J. P., Colca, J. R., DeWald, D. B., Pearson, J. D., and McDonald, J. M., 1988, The in vitro phosphorylation of calmodulin by the insulin receptor tyrosine kinase, Arch. Biochem. Biophys. 265:8–21.PubMedCrossRefGoogle Scholar
  18. Lin, P. H., Selinfreund, R., and Wharton, W., 1987, Calmodulin is phosphorylated on the tyrosine residue and binds to a different site from EGF on the EGF receptors, Fed. Proc. 46:396.Google Scholar
  19. Machicao, E., and Wieland, O. H., 1984, Evidence that the insulin receptor-associated protein kinase acts as a phosphatidylinositol kinase. FEBS Lett. 175:113–116.PubMedCrossRefGoogle Scholar
  20. Matthews, E. K., 1980, in: Secretory Mechanisms (C. R. Hopkins and C. J. Duncan, eds.), Cambridge University Press, London, pp. 225–249.Google Scholar
  21. McDonald, J. M., Bruns, D. E., and Jarett, L., 1976, Ability of insulin to increase calcium binding by adipocyte plasma membranes, Proc. Natl. Acad. Sci. USA 73:1542–1546.PubMedCrossRefGoogle Scholar
  22. McDonald, J. M., Graves, C. B., and Christensen, R. L., 1984, in: Calcium and Cell Function ,Vol. (W. Y. Cheung, ed.), Academic Press, New York, p. 209.Google Scholar
  23. McDonald, J. M,, Pershadsingh, H. A., and Colca, J., 1987, The role of calcium and calmodulin in insulin receptor function in the adipocyte, Ann. N. Y. Acad. Sci. 488:406–418.CrossRefGoogle Scholar
  24. McDonald, J. M., and Pershadsingh, H. A., 1985, in: Molecular Basis of Insulin Action (M. P. Czech, ed.), Plenum Press, New York, p. 103.Google Scholar
  25. Nakajo, S., Hayashi, K., Daimatsu, T., Tanaka, M., Nakaya, K., and Nakamura, Y., 1986, Phos-phorylation of rat brain calmodulin in vivo and in vitro, Biochem. Int. 13:687–693.PubMedGoogle Scholar
  26. Pershadsingh, H. A., Shade, D. L., Delfert, D. M., and McDonald, J. M., 1987a, Chelation of intracellular calcium blocks insulin action in the adipocyte, Proc. Natl. Acad. Sci. USA 84:1025–1029.PubMedCrossRefGoogle Scholar
  27. Pershadsingh, H. A., Shade, D. L., and McDonald, M., 1987b, Insulin-dependent alterations of phorbol ester binding to adipocyte subcellular constituents. Evidence for the involvement of protein kinase C in insulin action, Biochem. Biophys. Res. Commun. 145:1384–1389.PubMedCrossRefGoogle Scholar
  28. Pershadsingh, H. A., and McDonald, J. M., 1979, Direct addition of insulin inhibits a high affinity of Ca2+ -ATPase in isolated adipocyte plasma membranes, Mature 281:495–497.CrossRefGoogle Scholar
  29. Plancke, Y. D., and Lazarides, E., 1983, Evidence for a phosphorylated form of calmodulin in chicken brain and muscle, Molec. Cell. Biol. 3:1412–1420.PubMedGoogle Scholar
  30. Rose, B., and Lowenstein, W. R., 1975, Calcium ion distribution in cytoplasm visualized by aequorin: diffusion in cytosol restricted by energized sequestering. Science 190:1204–1206.PubMedCrossRefGoogle Scholar
  31. Shechter, Y., 1984, Trifluoperazine inhibits insulin action on glucose metabolism in fat cells without affecting inhibition of lipolysis, Proc. Natl. Acad. Sci. USA 81:327–331.PubMedCrossRefGoogle Scholar
  32. Vaartges, W. J., deHaas, C. C. M. and van der Bergh, S. O., 1986, Phorbol esters, but not epidermal growth factor or insulin, rapidly decrease soluble protein kinase C activity in rat hepatocytes, Biochem. Biophys. Res. Commun. 138:1328–1333.CrossRefGoogle Scholar
  33. Williams, D. A., Fogarty, K. E., Tsien, R. Y., and Fay, F. S., 1985, Calcium radients in single smooth muscle cells revealed by the digital imaging microscope using fura 2, Nature 318:558–561.PubMedCrossRefGoogle Scholar
  34. Williams, P. F., and Turtle, J. A., 1984, Terbium, a fluorescent probe for insulin receptor binding, Diabetes 33:1106–1111.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jay M. McDonald
    • 1
  • Joseph P. Laurino
    • 1
  • Jerry Colca
    • 2
  1. 1.Departments of Pathology and MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.The Upjohn CompanyKalamazooUSA

Personalised recommendations