Advertisement

Extracellular Ca2+ and Cell Cycle Transitions

Effect of Protein Kinase C and InsP3
  • Alton L. Boynton
  • Jean Zwiller
  • Timothy D. Hill
  • Thomas Nilsson
  • Per Arkhammer
  • Per-Olof Berggren
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Extracellular Ca2+ has been demonstrated to be required for proliferation of a wide variety of nonneoplastic cells of mesenchymal and epithelial origin bothin vivoandin vitro(Boyntonet al., 1974,1981; Boynton and Whitfield, 1976; Henningset al., 1980; Swierengaet al., 1980; Lechner and Kaighn, 1981; Swierenga, 1984). Specific stages of the growth-division cycle require extracellular Ca2+ as well as intracellular Ca2+ transients (Boynton et al., 1985a; Hazeltonet al., 1979; Heskethet al., 1987). Neoplastic cells, on the other hand, require 10-to 50-fold less extracellular Ca2+ than their neoplastic counterparts for their proliferative activity regardless of the means of neoplastic transformation (Swierengaet al., 1980; Boyntonet al., 1981; Whitfieldet al., 1987). However, it is not known if neoplastic cells require intracellular Ca2+ transients for cell cycle progression. It was first demonstrated in 1965 that adenovirus-infected cells could be selected from uninfected cells by culturing them in Ca2+ -deficient medium (Freemanet al., 1965, 1966). Balket al. (1973) extended this observation in 1973 to Rous sarcoma virus-infected chicken fibroblasts, and Boynton and Whitfield (1976) found that neoplastic cells transformed by DNA or RNA viruses, by chemicals, or by spontaneous means all required 10-to 50-fold less extracellular Ca2+ for proliferative activity.

Keywords

Protein Kinase Neoplastic Cell Neoplastic Transformation Cell Cycle Transition Deficient Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balk, S. D., Whitfield, J. F., Youdale, T., and Braun, A. C., 1973, Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts, Proc. Natl. Acad. Sci. 70:675–679.PubMedCrossRefGoogle Scholar
  2. Bonney, C., Fink, D., Schlichter, D., Carr, K., and Wicks, W., 1983, Direct evidence that the protein kinase catalytic subunit mediates the effects of cAMP on tyrosine aminotransferase synthesis, J. Biol. Chem. 258:4911–4918.Google Scholar
  3. Bossi, D., Whitfield, J. F., and Boynton, A. L., 1985, The influence of extracellular calcium on the distribution of protein kinase C in non-neoplastic and neoplastic rat liver cells. Cancer Letts. 26: 303–310.CrossRefGoogle Scholar
  4. Boynton, A. L., and Whitfield, J. F., 1976, Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells, Proc. Natl. Acad. Sci. 73:1651–1654.PubMedCrossRefGoogle Scholar
  5. Boynton, A. L., Kleine, L. F., and Whitfield, J. F., 1983, Ca2+/phospholipid-dependent protein kinase activity correlates to the ability of transformed liver cells to proliferate in Ca2+ -deficient medium, Biochem. Biophys. Res. Commun. 115:383–390.PubMedCrossRefGoogle Scholar
  6. Boynton, A. L., Kleine, L. P., and Whitfield, J. F., 1984, Relation between colony formation in calcium-dependent medium, colony formation in soft agar, and tumor formation by T51B rat liver cells, Cancer Lett. 21:293–302.PubMedCrossRefGoogle Scholar
  7. Boynton, A. L., Kleine, L. P., and Whitfield, J. F., 1985a, Cyclic AMP elevators stimulate the initiation of DNA synthesis by calcium-deprived rat liver cells, in: Control of Animal Cell Proliferation, Vol. I (A. L. Boynton and H. L. Leffert, eds.), Academic Press, Orlando, pp. 122–150.Google Scholar
  8. Boynton, A. L., Kleine, L. P., Whitfield, J. F., and Bossi, D., 1985b, Involvement of theCa2+ /phospholipiddependent protein kinase in the G1 transit of T51B rat liver epithelial cells, Exp. Cell Res. 160: 197–205.PubMedCrossRefGoogle Scholar
  9. Boynton, A. L., Swierenga, S. H. H., and Whitfield, J. F., 1981, The calcium independence of neoplastic cell proliferation: A promising tool for carcinogen detection, in: Short-term Tests for Chemical Carcinogens (H. F. Stich and R. H. San, eds.), Springer-Verlag, New York, pp. 362–371.CrossRefGoogle Scholar
  10. Boynton, A. L., Whitfield, J. F., Isaacs, R. J., and Morton, H. J., 1974, Control of 3T3 cell proliferation by calcium, In Vitro 10:12–17.PubMedCrossRefGoogle Scholar
  11. Fleischman, L. F., Chahwala, S. B., and Cantley, L., 1986, Ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites, Science 231:309–312.CrossRefGoogle Scholar
  12. Freeman, A. E., Calisher, C. H., Price, P. J., Turner, H. C., and Huebner, R. J., 1966, Calcium sensitivity of cell cultures derived from adenovirus-induced tumors, Proc. Soc. Exp. Biol. Med. 122:835–840.PubMedGoogle Scholar
  13. Freeman, A. E., Hollings, S., Price, P. J., and Calisher, C. H., 1965, The effect of calcium on cell lines derived from adenovirus type 12-induced hamster tumors, Exp. Cell Res. 39:259–264.PubMedCrossRefGoogle Scholar
  14. Gomperts, B. D., 1984, Involvement of guanine nucleotide-binding protein in the gating of Ca2+ receptors, Nature ,306:64–66CrossRefGoogle Scholar
  15. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  16. Hazelton, B., Mitchell, B., and Tupper, J., 1979, Calcium, magnesium, and growth control in the WI-38 human fibroblast cell, J. Cell. Biol. 83:487–498.PubMedCrossRefGoogle Scholar
  17. Hennings, H., Michael, D., Chen, C., Steinen, P., Holbrook, K., and Yuspa, S., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19:245–254.PubMedCrossRefGoogle Scholar
  18. Hesketh, R., Smith, G. A., and Metcalfe, J. C., 1987, Intracellular calcium and normal eukaryotic cell growth, in: Control of Animal Cell Proliferation (A. L. Boynton and H. L. Leffert, eds.), Academic Press, Orlando, pp. 395–434.Google Scholar
  19. Lechner, J. F., and Kaighn, M. E., 1981, Reduction of the calcium requirement of normal human epithelial cells by EGF, Exp. Cell. Res. 121:432–435.CrossRefGoogle Scholar
  20. Naghshineh, S., Noguchi, M., Huang, K. P., and Londos, C., 1986, Activation of adipocyte adenylate cyclase by protein kinase C., J. Biol. Chem. 261:14534–14538.PubMedGoogle Scholar
  21. Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature 306:67–69.PubMedCrossRefGoogle Scholar
  22. Swierenga, S. H. H., 1984, Use of low calcium medium in carcinogenicity testing: studies with rat liver cells, in: In Vitro Models for Cancer Research Vol. II (M. M. Weber and L. T. Skely, eds.), CRC Press, Boca Raton, pp. 61–89.Google Scholar
  23. Swierenga, S. H. H., Whitfield, J. F., Boynton, A. L., MacManus, J. P., Rixon, R. H., Sikorska, M., Tsang, B. K., and Walker, P. R., 1980, Regulation of proliferation of normal and neoplastic rat liver cells by calcium and cyclic AMP, Ann. N.Y. Acad. Sci. 349:294–311.PubMedCrossRefGoogle Scholar
  24. Swierenga, S. H. H., Whitfield, J. F., and Karasaki, S., 1978, Loss of proliferative calcium dependence: Simple in vitro indicator of tumorigenicity, Proc. Natl. Acad. Sci. 75:6069–6072.PubMedCrossRefGoogle Scholar
  25. Takai, Y., Kishimoto, A., and Nishizuka, Y., 1982, Calcium and phospholipid turnover as transmem-brane signalling for protein phosphorylation, in: Calcium and Cell Function (W. Y. Cheung, ed.) Academic Press, Orlando, pp. 385–412.Google Scholar
  26. Whitfield, J. F., Boynton, A. L., Rixon, R. H., and Youdale, T., 1985, The control of cell proliferation by calcium, Ca2+ -calmodulin, and cyclic AMP, in: Control of Animal Cell Proliferation ,Vol. I, (A. L. Boynton and H. L. Leffert, eds.), Academic Press, Orlando, pp. 332–366.Google Scholar
  27. Whitfield, J. F., Durkin, J. P., Franks, D. J., Kleine, L. P., Raptis, L., Rixon, R. H., Sikorska M., and Walker, P. R., 1987, Calcium, cyclic AMP and protein kinase C-partners in mitogenesis, Cancer and Metastasis Reviews, 5:205–250.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Alton L. Boynton
    • 1
  • Jean Zwiller
    • 1
  • Timothy D. Hill
    • 1
  • Thomas Nilsson
    • 2
  • Per Arkhammer
    • 2
  • Per-Olof Berggren
    • 2
  1. 1.Cancer Research Center of HawaiiUniversity of HawaiiHonoluluUSA
  2. 2.Department of Medical Cell Biology, BiomedicumUniversity of UppsalaUppsalaSweden

Personalised recommendations