Protein Kinase C in Rat Skeletal Muscle

  • Perry J. F. Cleland
  • Erik A. Richter
  • Stephen Rattigan
  • Eric Q. Colquhoun
  • Michael G. Clark
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Activation of skeletal muscle contraction under physiological conditions involves depolari zation of transverse tubular regions of the sarcolemma (Huxley and Taylor, 1958; Hodgkin and Horowicz, 1960; Costantin and Taylor, 1973; Costantin, 1975) leading to Ca2+ release from the terminal cisternae of the sarcoplasmic reticulum (Stephenson, 1981). The transverse tubular-terminal cisternae transmembrane signaling mechanism apparently is nonelectrical (Donaldson, 1985; Donaldsonet al., 1987 and references therein) and there have been numerous studies aimed at examining the chemical triggering of sarcoplasmic reticulum Ca2+ release. In this regard some researchers have examined the role of inositol phosphates in the mobilization of intracellular skeletal muscle Ca2+ (Volpeet al., 1985; Vergaraet al., 1985; Thieleczek and Heilmeyer, 1986; Noseket al., 1986; Donaldsonet al., 1987). Such studies were based on findings that inositol trisphosphate (IP3) elicited Ca2+ release from the endoplasmic reticulum of a wide variety of cells (Berridge, 1981; Suematsuet al., 1984; Hirataet al., 1984; Hokin, 1985). A recent study showed that locally applied microinjected 1µM IP3stimulated Ca2+ release from peeled skeletal muscle fibers and, although it did not sdirectly activate the contractile apparatus (Donaldsonet al., 1987), its role in excitation contraction coupling was concluded to involve propagation of Ca2+ release acting beyond the step of transverse tubule depolarization (Donaldsonet al., 1987) at the sarcoplasmic reticulum (Volpeet al., 1985).


Sarcoplasmic Reticulum Soleus Muscle Particulate Fraction Particulate Activity Inositol Trisphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariano, M. A., Armstrong, R. B., and Edgerton, V. R., 1973, Hindlimb muscle fibre populations of five mammals, J. Hist. Cytochem. 21:51–55.CrossRefGoogle Scholar
  2. Averdunk, R., and Gunther, T., 1986, Protein kinase C in cytosol and cell membranes of concanavalin A-stimulated rat thymocytes, FEBS Lett. 195:357–361.PubMedCrossRefGoogle Scholar
  3. Berridge, M. J., 1981, Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism, in Molec. Cell. Endocrinol. 24:115–140.PubMedCrossRefGoogle Scholar
  4. Bouscarel, B., and Exton, J. H., 1986, Regulation of hepatic glycogen phosphorylase and glycogen synthase by calcium and diacylglycerol, Biochem. Biophys. Acta 888:126–134.PubMedCrossRefGoogle Scholar
  5. Costantin, L. L., 1975, Contractile activation in skeletal muscle, Prog. Biophys. and Mol. Biol. 29: 197–224.CrossRefGoogle Scholar
  6. Costantin, L. L., and Taylor, S. R., 1973, Graded activation in frog muscle fibres, J. Gen. Physiol. 61:424–443.PubMedCrossRefGoogle Scholar
  7. Donaldson, S. K. B., 1985, Peeled mammalian skeletal muscle fibres. Possible stimulation of Ca2+ release via a transverse tubule sarcoplasmic reticulum mechanism, J. Gen. Physiol. 86:501–525.PubMedCrossRefGoogle Scholar
  8. Donaldson, S. K., Goldberg, N. D., Walseth, T. F., and Huetteman, D. A., 1987, Inositol trisphosphate stimulates calcium release from peeled skeletal muscle fibres, Biochim. Biophys. Acta 927:92–99.PubMedCrossRefGoogle Scholar
  9. Gibbs, E. M., Allard, W. J., and Lienhard, G. E., 1986, The glucose transporter in 3T3-L1 adipocytes is phosphorylated in response to phorbol ester but not in response to insulin, J. Biol. Chem. 261: 16597–16603.PubMedGoogle Scholar
  10. Hirata, M., Suematsu, E., Hashimoto, T., Hamachi, T., and Koga, T., 1984, Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate, Biochem. J. 223:229–236.PubMedGoogle Scholar
  11. Hodgkin, A. L., and Horowicz, P., 1960, Potassium contractures in single muscle fibres, J. Physiol. (Lond.) 153:386–403.Google Scholar
  12. Hofer, H. W., Schlauer, S., and Graefe, M., 1985, Phosphorylation of phosphofructokinase by protein kinase C changes the allosteric properties of the enzyme, Biochem. Biophys. Res. Commun. 129: 892–897.PubMedCrossRefGoogle Scholar
  13. Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Ann. Rev. Biochem. 54:205–235.PubMedCrossRefGoogle Scholar
  14. Huxley, A F., and Taylor, R. E., 1958, Local activation of striated muscle fibres, J. Physiol. (Lond.) 144:426–441.Google Scholar
  15. Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y., 1977, Studies on a cyclic nucleotide-inde-pendent protein kinase and its proenzyme in mammalian tissues, J. Biol. Chem. 252:7610–7616.PubMedGoogle Scholar
  16. James, D. E., Kraegen, E. W., and Chisholm, D. J., 1985, Muscle glucose metabolism in exercising rats: comparison with insulin stimulation, Am. J. Physiol. 248:E575–E58O.PubMedGoogle Scholar
  17. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium-activated, phospholipid-dependent protein kinase from rat brain, in J. Biol. Chem. 257:13341–13348.PubMedGoogle Scholar
  18. Kuo, J. F., Andersson, R. G. G., Wise, B. C., Mackerlova, L., Salomonsson, L., Brackett, N. L., Katoh, N., Shoji, M., and Wrenn, R. W., 1980, Calcium-dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine, Proc. Natl. Acad. Sci. USA 77:7039–7043.PubMedCrossRefGoogle Scholar
  19. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308:693–698.PubMedCrossRefGoogle Scholar
  20. Nosek, T. M., Williams, M. F., Zeigler, S. T., and Godt, R. E.,1986, Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle, Am. J. Physiol. 250:C807–C811.PubMedGoogle Scholar
  21. Stephenson, E. W., 1981, Activation of fast skeletal muscle: Contributions of studies on skinned fibres, Am. J. Physiol. 240:C1–C19.PubMedGoogle Scholar
  22. Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Commun. 120:481–485.PubMedCrossRefGoogle Scholar
  23. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., and Nishizuka, Y., 1979, Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91:1218–1224.PubMedCrossRefGoogle Scholar
  24. Thieleczek, R., and Heilmeyer, L. M. G. Jr., 1986, Inositol 1,4,5-trisphosphate enhances Ca2+ sensitivity of the contractile mechanism of chemically skinned rabbit skeletal muscle fibres, Biochem. Biophys. Res. Commun. 135:662–669.PubMedCrossRefGoogle Scholar
  25. Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA 82:6352–6356.PubMedCrossRefGoogle Scholar
  26. Volpe, P., Di Virgilio, F., and Pozzan, T., 1987, Inositol trisphosphate and muscle: caution is a must, Trends. Biochem. Sci. 12:139–140.CrossRefGoogle Scholar
  27. Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature 316:347–349.PubMedCrossRefGoogle Scholar
  28. Witters, L. A., Vater, C. A., and Lienhard, G. E., 1985, Phosphorylation of the glucose transporter in vitro and in vivo by protein kinase C., Nature 315:777–778.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Perry J. F. Cleland
    • 1
  • Erik A. Richter
    • 2
  • Stephen Rattigan
    • 1
  • Eric Q. Colquhoun
    • 1
  • Michael G. Clark
    • 1
  1. 1.Department of BiochemistryUniversity of TasmaniaHobartAustralia
  2. 2.August Krogh InstituteUniversity of CopenhagenDenmark

Personalised recommendations