Regulation of Hepatic Glycogenolysis by Calcium-Mobilizing Hormones

  • Peter F. Blackmore
  • Christopher J. Lynch
  • Stephen B. Bocckino
  • John H. Exton
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The hormonal regulation of glycogen metabolism in the liver has been a subject of investigation for more than 30 years. The intracellular mediators responsible for this regulation have been identified as cAMP and Ca2+ . In the liver, several hormones such as vasopressin, angiotensin II, epidermal growth factor (Boschet al., 1986), glucagon (Blackmore and Exton, 1986),α 1-adrenergic agonists and P2purinergic agonists (Charestet al., 1985a,b) increase free cytosolic Ca2+ ([Ca2+ ]i). Each of these hormones binds to specific cell surface receptors; this interaction then leads to the activation of a guanine nucleotide-binding protein (Gp) (e.g., Blackmoreet al., 1985; Uhinget al., 1986). In the case of glucagon and epidermal growth factor, the mechanism of activation of Gpis not known but probably involves phosphorylation of Gp(Boschet al., 1986; Johnsonet al., 1986; Blackmore and Exton, 1986). This coupling protein then activates a specific phospholipase C which catalyzes the breakdown of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) (Creba et al., 1983; Rhodeset al., 1983; Thomaset al., 1983; Litoschet al., 1983). The hydrolysis of PI-4,5-P2yields myoinositol-1,4,5-trisphosphate (Ins-1,4,5-P3) (Thomaset al., 1984) and 1,2-diacylglycerol (DAG) (Bocckinoet al., 1985). The Ins-1,4,5-P3releases Ca2+ from the endoplasmic reticulum into the cytoplasm (Josephet al., 1984), while DAG activates a Ca2+ -and phospholipid-dependent protein kinase (protein kinase C) in the plasma membrane (Nishizuka, 1984; Berridge, 1984).


Phosphatidic Acid Inositol Trisphosphate Aluminum Fluoride Specific Cell Surface Receptor Hepatic Glycogenolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.PubMedGoogle Scholar
  2. Blackmore, P. F., and Exton, J. H., 1986, Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate, J. Biol. Chem. 261: 11056–11063.PubMedGoogle Scholar
  3. Blackmore, P. F., Strickland, W. G., Bocckino, S. B., and Exton, J. H., 1986, Mechanism of hepatic glycogen synthase inactivation induced by Ca2+ mobilizing hormones, Biochem. J. 237:235–242.PubMedGoogle Scholar
  4. Blackmore, P. F., Waynick, L., Blackman, G. E., Graham, C. W., and Sherry, R. S., 1984, α- and ß-adrenergic stimulation of parenchymal cell Ca2+ influx: influence of extracellular pH, J. Biol. Chem. 259:12322–12325.PubMedGoogle Scholar
  5. Blackmore, P. F., Bocckino, S. B., Waynick, L. E., and Exton, J. H., 1985, Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride, J. Biol. Chem. 260:14477–14483.PubMedGoogle Scholar
  6. Bocckino, S. B., Blackmore, P. F., Wilson, P. and Exton, J. H., 1987, Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism, J. Biol. Chem. 262:15309–15315.PubMedGoogle Scholar
  7. Bocckino, S. B., Blackmore, P. F., and Exton, J. H., 1985, Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine and angiotensin II, J. Biol. Chem. 260: 14201–14207.PubMedGoogle Scholar
  8. Bosch, F., Bouscarel, B., Slaton, J., Blackmore, P. F., and Exton, J. H., 1986, Epidermal growth factor mimics insulin effects in rat hepatocytes, Biochem. J. 239:523–530.PubMedGoogle Scholar
  9. Charest, R., Prpic, V., Exton, J. H., and Blackmore, P. F., 1985a, Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, epinephrine and angiotensin II and its relationship to changes in cytosolic free Ca2+, Biochem. J. 227:79–90.PubMedGoogle Scholar
  10. Charest, R., Blackmore, P. F., and Exton, J. H., 1985b, Characterization and responses of isolated rat hepatocytes to ATP and ADP, J. Biol. Chem. 260:15789–15794.PubMedGoogle Scholar
  11. Creba, J. A., Downes, C. P. K., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+ -mobilizing hormones, Biochem. J. 212:733–747.PubMedGoogle Scholar
  12. El-Refai, M. F., Blackmore, P. F., and Exton, J. H., 1979, Evidence for two α-adrenergic binding sites in liver plasma membranes. Studies with [3H]epinephrine and [3H]dihydroergocryptine, J. Biol. Chem. 254:4375–4386.PubMedGoogle Scholar
  13. Exton, J. H., 1987, Mechanisms of α1-adrenergic and related responses: Roles of calcium, phosphoi-nositides, guanine nucleotides, diacylglycerol, calmodulin and changes in protein phosphorylation, in: Cell Membranes: Methods and Reviews (E. L. Elson, W. A. Frazier, and L. Glaser, eds.). Plenum Press, New York 3:113–182.CrossRefGoogle Scholar
  14. Fitzgerald, T. J., Uhing, R. J., and Exton, J. H., 1986, Solubilization of the vasopressin receptor from liver plasma membranes. Evidence for a receptor GTP binding protein complex, J. Biol. Chem. 261:16871–16877.PubMedGoogle Scholar
  15. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  16. Holmes, R. P., and Yoss, N. L., 1983, Failure of phosphatidic acid to translocate Ca2+ across phos-phatidylcholine membranes, Nature 305:637–638.PubMedCrossRefGoogle Scholar
  17. Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent of external Ca2+ , Biochem. J. 240:917–920.PubMedGoogle Scholar
  18. Johnson, R. M., Connelly, P. A., Sisk, R. B., Pobiner, B.F., Hewlett, E. L., and Garrison, J. C., 1986, Pertussis toxin or phorbol 12-myristate 13-acetate can distinguish between growth factor-and angiotensin-stimulated signals in hepatocytes, Proc. Natl. Acad. Sci. USA 83:2032–2036.PubMedCrossRefGoogle Scholar
  19. Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R., 1984, Myo-inositol 1,4,5-trisphosphate: A second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077–3081.PubMedGoogle Scholar
  20. Kuno, M., and Gardner, P., 1987, Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes, Nature 326:301–304.PubMedCrossRefGoogle Scholar
  21. Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., Debernadis, J. F., Lefkowitz, R. J., and Caron, M. G., 1985, Phorbol esters promote α1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. Natl. Acad. Sci. USA 82:5651–5655.PubMedCrossRefGoogle Scholar
  22. Litosch, I., Lin, S. H., and Fain, J. N., 1983, Rapid changes in hepatocyte phosphoinositides induced by vasopressin, J. Biol. Chem. 258:13827–13732.Google Scholar
  23. Lynch, C. J., Charest, R., Blackmore, P. F., and Exton, J. H., 1985, Studies on the hepatic α1- adrenergic receptor. Modulation of guanine nucleotide effects by calcium temperature and age. J. Biol. Chem. 260:1593–1600.PubMedGoogle Scholar
  24. Lynch, C. J., Wilson, P. B., Blackmore, P. F., and Exton, J. H., 1986, The hormone-sensitive hepatic Na + -pump. Evidence for regulation by diacylglycerol and tumor promoters. J. Biol. Chem. 261: 14551–14556.PubMedGoogle Scholar
  25. Morgan, N. G., Blackmore, P. F., and Exton, J. H., 1983, Modulation of the α1-adrenergic control of hepatocyte calcium redistribution by increases in cAMP, J. Biol. Chem. 258:5110–5116.PubMedGoogle Scholar
  26. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308:693–698.PubMedCrossRefGoogle Scholar
  27. Prpic, V., Green, K. C., Blackmore, P. F., and Exton, J. H., 1984, Vasopressin-, angiotensin II-, and α1-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles, J. Biol. Chem. 259:1382–1385.PubMedGoogle Scholar
  28. Putney, J. W., 1986, A model for receptor-regulated calcium entry, Cell Calcium 7:1–12.PubMedCrossRefGoogle Scholar
  29. Rhodes, D., Prpic, V., Exton, J. H., and Blackmore, P. F., 1983, Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in hepatocytes by vasopressin, J. Biol. Chem. 258:2770–2773.PubMedGoogle Scholar
  30. Roach, P. J., and Goldman, M., 1983, Modification of glycogen synthase activity in isolated rat hepatocytes by tumor-promoting phorbol esters: Evidence for differential regulation of glycogen synthase and phosphorylase, Proc. Natl. Acad. Sci. USA 80:7170–7172.PubMedCrossRefGoogle Scholar
  31. Schworer, C. M., El-Maghrabi, M. R., Pilkis, S. J., and Soderling, T. R., 1985, Phosphorylation of L-type pyruvate kinase by a Ca2+ /calmodulin-dependent protein kinase, J. Biol. Chem. 260: 13018–13022PubMedGoogle Scholar
  32. Sternweis, P. C., and Gilman, A. G., 1982, Aluminum: A requirement for activation of the regulatory component of adenylate cyclase by fluoride, Proc. Nad. Acad. Sci. USA 79:4888–4891.CrossRefGoogle Scholar
  33. Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.PubMedGoogle Scholar
  34. Thomas, A. P., Marks, J. S., Coll, K. E., and Williamson, J. R., 1983, Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes, J. Biol. Chem. 258:5716–5725.PubMedGoogle Scholar
  35. Uhing, R. J., Prpic, V., Jiang, H., and Exton, J. H., 1986, Hormone stimulated polyphosphoinositide breakdown in rat liver plasma membranes: roles of guanine nucleotides and calcium, J. Biol. Chem. 261:2140–2146.PubMedGoogle Scholar
  36. Vaartjes, W. J., deHaas, G. G. M., Geelen, M. J. H., and Bijleveld, C., 1987, Stimulation by a tumorpromoting phorbol ester of acetyl-CoA carboxylase activity in isolated rat hepatocytes, Biochem. Biophys. Res. Commun. 142:135–140.PubMedCrossRefGoogle Scholar
  37. Woodgett, J. R., Davison, M. T., and Cohen, P., 1983, The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle: purification, subunit structure and substrate specificity, Eur. J. Biochem. 136:481–487.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Peter F. Blackmore
    • 1
  • Christopher J. Lynch
    • 2
  • Stephen B. Bocckino
    • 2
  • John H. Exton
    • 2
  1. 1.Department of PharmacologyEastern Virginia Medical SchoolNorfolkUSA
  2. 2.Howard Hughes Medical Institute Laboratories, and Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations