Evidence for the Existence of the Inositol Tris/Tetrakisphosphate Pathway in Rat Heart

  • D. Renard
  • J. Poggioli
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


In skeletal and cardiac muscles, polyphosphoinositide hydrolysis by phospholipase C is increased by electrical or hormonal stimulation, thus producing inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) and diacylglycerol (Vergaraet al., 1985; Poggioliet al., 1986). Ins-1,4,5-P3was shown to release Ca2+ from sarcoplasmic reticulum and promote tension in skinned fibers (Hirataet al., 1984; Noseket al., 1986; Movsesianet al., 1985). Diglycerides activate protein kinase C., which in turn may influence certain ionic permeabilities (De Riemeret al., 1985) and the sensitivity of myofilaments to Ca2+ (Endoh and Blinks, 1988).


Sarcoplasmic Reticulum Inositol Phosphate Inositol Trisphosphate RINm5F Cell Phosphomonoesterase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartfai, T., 1979, Preparation of metal-chelate complexes and the design of steady-state kinetic exper iments involving metal nucleotide complexes, Adv. Cyclic Nucleotide Res. 10:219–242.PubMedGoogle Scholar
  2. Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215.PubMedGoogle Scholar
  3. Biden, T. J., and Wollheim, C. B., 1986, Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RINm5F cells, J. Biol. Chem. 261:11931–11934.PubMedGoogle Scholar
  4. Bradford, P. G., and Rubin, R. P., 1986, Quantitative changes in inositol 1,4,5-trisphosphate in chemoattractant stimulated neutrophils. J. Biol. Chem. 261:15644–15647.PubMedGoogle Scholar
  5. Burgess, G. M., McKinney, J. S., Irvine, R. F., and Putney, J. W. Jr., 1985, Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+ -mobilizing-hormone-activated cell, Biochem. J. 232:237–243.PubMedGoogle Scholar
  6. Connolly, T. M., Bross, T. E., and Majerus, P. W., 1985, Isolation of phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate, J. Biol. Chem. 260:7868–7874.PubMedGoogle Scholar
  7. Connolly, T. M., Bansal, V. S., Bross, T. E., Irvine, R. F., and Majerus, P. W., 1987, The metabolism of tris-and tetraphosphates of inositols by 5-phosphomonoesterase and 3-kinase enzymes, J. Biol. Chem. 262:2146–2149.PubMedGoogle Scholar
  8. De Riemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K., 1985, Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature 313:313–316.CrossRefGoogle Scholar
  9. Downes, C. P., Hawkins, P. T., and Irvine, R. F., 1986, Inositol 1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid gland, Biochem. J. 238:501–506.PubMedGoogle Scholar
  10. Downes, C. P., and Michell, R. H., 1981, The polyphosphoinositide phosphodiesterase of erythrocyte membranes, Biochem. J. 198:133–140.PubMedGoogle Scholar
  11. Downes, C. P., Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate phosphomon-oesterase of the human erythrocyte membrane, Biochem. J. 203:169–177.PubMedGoogle Scholar
  12. Endoh, M., and Blinks, J. R., 1988, Actions of sympathomimetic amines, on the Ca2+ transients and contractions of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through α- and ß-adrenoceptors, Circ. Res. 62:247–265.PubMedGoogle Scholar
  13. Hansen, C. A., Mah, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261:8100–8103.PubMedGoogle Scholar
  14. Hirata, M., Suematsu, E., Hashimoto, T., Hamachi, T., and Koga, T., 1984, Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages tested with saponin by inositol 1,4,5-trisphosphate, Biochem. J. 223:229–236.PubMedGoogle Scholar
  15. Houslay, M. D., 1987, Egg activation unscrambles a potential role for IP4, Trends Biochem. Sci. 12:1–2.CrossRefGoogle Scholar
  16. Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downes C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands, Biochem. J. 229:505–511.PubMedGoogle Scholar
  17. Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+ , Biochem. J. 240:917–920.PubMedGoogle Scholar
  18. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986, The inositol tris/tetrakisphosphate pathway-demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues, Nature 320:631–634.PubMedCrossRefGoogle Scholar
  19. Merrit, J. E., Taylor, C. W., Rubin, R. P., and Putney, J. W. Jr., 1986, Isomers of inositol trisphosphate in exocrine pancreas, Biochem. J. 238:825–829.Google Scholar
  20. Michell, B., 1986, A second messenger function for inositol tetrakisphosphate, Nature 324:613.PubMedCrossRefGoogle Scholar
  21. Movsesian, M. A., Thomas, A. P., Selak, M., and Williamson, J. R., 1985, Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum, FEBS Lett. 185:328–332.PubMedCrossRefGoogle Scholar
  22. Nosek, T. M., Williams, M. F., Zeigler, S. T., and Godt, R. E., 1986, Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle, Am. J. Physiol. 250:C807–C811.PubMedGoogle Scholar
  23. Poggioli, J., Sulpice, J. C., and Vassort, G., 1986, Inositol phosphate production following α1-adre-nergic, muscarinic or electrical stimulation in isolated rat heart, FEBS Lett. 206:292–297.PubMedCrossRefGoogle Scholar
  24. Powell, T., Tatham, P. E. R., and Twist, V. W., 1984, Cytoplasmic free calcium measured by quin2 fluorescence in isolated ventricular myocytes at rest and during potassium depolarization, Biochim. Biophys. Res. Commun. 122:1012–1020.CrossRefGoogle Scholar
  25. Raval, P. J., and Allan, D., 1985, Ca2+ -induced polyphosphoinositide breakdown due to phospho-monoesterase activity in chicken erythrocytes, Biochem. J. 231:179–182.PubMedGoogle Scholar
  26. Rittenhouse, S. E., and Sasson, J. P., 1985, Mass changes in myoinositol trisphosphate in human platelets stimulated by thrombin, J. Biol. Chem. 260:8657–8660.PubMedGoogle Scholar
  27. Rossier, M. F., Dentand, I. A., Lew, P. D., Capponi, A. M., and Vallonton, M. B., 1986, Intercon-version of inositol (1,4,5)-trisphosphate to inositol (1,3,4,5)-tetrakisphosphate and (1,3,4)-tris-phosphate in permeabilized adrenal glomerulosa cells is calcium-sensitive and ATP-dependent. Biochim. Biophys. Res. Commun. 139:259–265.CrossRefGoogle Scholar
  28. Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic dephosphor-ylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature 312:374–376.PubMedCrossRefGoogle Scholar
  29. Thomas, A. P., Selak, M., and Williamson, J. R., 1986, Measurement of electrically-induced Ca2+ transients in quin2-loaded cardiac myocytes. J. Molec. Cell. Cardiol. 18:541–545.CrossRefGoogle Scholar
  30. Vergara, J., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle. Proc. Natl. Acad. Sci. 82:6352–6356.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. Renard
    • 1
  • J. Poggioli
    • 1
  1. 1.Cellular Physiology and Pharmacology Research Unit, INSERM U-274Université Paris-SudOrsay CedexFrance

Personalised recommendations