Advertisement

Metabolism of Ins(1,3,4)P3 by Rat Liver Homogenates

  • C. J. Kirk
  • J. B. Parry
  • R. F. Irvine
  • R. H. Michell
  • S. B. Shears
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Receptor -mediated PtdIns(4,5)P2hydrolysis directly generates two intracellular mes senger molecules: diacylglycerol, which activates protein kinase C., and Ins(1,4,5)P3, which mobilizes Ca2+ from intracellular stores (see Berridge and Irvine, 1984; Downes and Michell, 1985 for review). Irvineet al. (1984) first recognized the existence of another inositol trisphosphate isomer, Ins(1,3,4)P3. This has now been shown to be the major inositol trisphosphate present following prolonged receptor stimulation in several tissues (Irvineet al., 1985; Burgesset al., 1985; Hansenet al., 1986). Ins(1,3,4)P3arises as a consequence of 5-phosphatase attack on Ins(1,3,4,5)P4, which is itself the product of the phosphorylation of Ins(1,4,5)P3(Irvineet al., 1986a; Hansenet al., 1986). This pathway is probably a major route for the removal of the Ca2+ -mobilizing Ins(1,4,5)P3message from stimulated cells (Irvineet al., 1986a). In addition, Ins(1,3,4,5)P4has been suggested to fulfill a second messenger role inside the cell, by stimulating Ca2+ entry across the plasma membrane (Irvine and Moor, 1986).

Keywords

Liver Homogenate Inositol Phosphate Inositol Trisphosphate Erythrocyte Plasma Membrane Polyphosphate Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.PubMedCrossRefGoogle Scholar
  2. Burgess, G. M., McKinney, J. S., Irvine, R. F., and Putney, J. W. Jr., 1985, Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+ -mobilizing-hormone-activated cells, Biochem. J. 232:237–243.PubMedGoogle Scholar
  3. Downes, C. P., and Michell, R. H., 1985, In Molecular Mechanisms of Transmembrane Signalling (P. Cohen, and M. D. Houslay, eds.), pp. 3–56, Elsevier, Amsterdam.Google Scholar
  4. Downes, C. P., Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate phosphomon-oesterase of the human erythrocyte membrane, Biochem. J. 203:169–177.PubMedGoogle Scholar
  5. Frahn, J. L., and Mills, A. J., 1959, Aust. J. Chem. 12:65–89.CrossRefGoogle Scholar
  6. Grado, C., and Ballou, C. E., 1961, Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain phosphoinositide, J. Biol. Chem. 236:54–60.PubMedGoogle Scholar
  7. Hansen, C. A., Mah, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261:8100–8103.PubMedGoogle Scholar
  8. Heslop, J. P., Irvine, R. F., Tashjian, A. M., and Berridge, M. J., 1985, Inositol tetrakis-and pentakisphosphates in GH4 cells, J. Exp. Biol. 119:395–401.PubMedGoogle Scholar
  9. Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240:917–920.PubMedGoogle Scholar
  10. Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P., Inositol trisphosphates in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243.Google Scholar
  11. Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downes, C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands Biochem. J. 229:505–511.PubMedGoogle Scholar
  12. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J. ,1986a, The inositol tris/tetrakisphosphate pathway-demonstration of Ins(1,4,5)P3–3 kinase activity in animal tissues, Nature 320:631–634.PubMedCrossRefGoogle Scholar
  13. Irvine, R. F., Letcher, A. J., Lander, D. J., and Berridge, M. J., 1986b, Specificity of inositol phosphatestimulated Ca2+ mobilization from swiss-mouse 3T3 cells, Biochem. J. 240:301–304.PubMedGoogle Scholar
  14. Lim, P. E., and Tate, M. E., 1973, The phytases II. Properties of phytase fractions F1 and F2 from wheat bran and the myoinositol phosphates produced by fraction F2, Biochem. Biophys. Acta 302:316–328.PubMedGoogle Scholar
  15. Morgan, R. O., Chang, J. P., and Catt, K. J., 1987, Novel aspects of gondotrophin-releasing hormone action on inositol polyphosphate metabolism in cultured pituitary gonadotrophs, J. Biol. Chem. 262:1166–1171.PubMedGoogle Scholar
  16. Shears, S. B., Storey, D. J., Morris, A. J., Cubitt, A. B., Parry, J. B., Michell, R. H., and Kirk, C. J., 1987a, Dephosphorylation of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,3,4-tris phosphate, Biochem. J. 242:393–402.PubMedGoogle Scholar
  17. Shears, S. B., Parry, J. B., Tang, E. K. Y., Irvine, R. F., Michell, R. H., and Kirk, C. J., 1987b, Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate, Biochem. J. 246:139–147.PubMedGoogle Scholar
  18. Tomlinson, R. V., and Ballou, C. E., 1967, Biochemistry ,1:66–70.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. J. Kirk
    • 1
  • J. B. Parry
    • 1
  • R. F. Irvine
    • 2
  • R. H. Michell
    • 1
  • S. B. Shears
    • 1
  1. 1.Department of BiochemistryUniversity of BirminghamBirminghamUK
  2. 2.Department of BiochemistryAFRC Institute of Animal PhysiologyBabraham, CambridgeUK

Personalised recommendations