Receptor-Mediated Ca2+ Signaling

Role in lnositol-1,3,4,5-Tetrakisphosphate Generation
  • John R. Williamson
  • Roy A. Johanson
  • Carl A. Hansen
  • Jonathan R. Monck
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Over the past few years it has become apparent that Ca2+ signaling in many different cell types is initiated by an agonist-induced breakdown of inositol lipids in the plasma membrane (Berridge and Irvine, 1984; Williamsonet al., 1985; Hokin, 1985). This is mediated by a receptor-coupled GTP-binding protein, which is thought to dissociate upon binding of suitable agonists to their receptors to aßγ-subunit complex and an α subunit containing bound GTP (Fitzgeraldet al., 1986; Dickeyet al, 1987). The GTP-boundαsubunit then promotes the activity of an inositol lipid phosphodiesterase (phospholipase C) that splits phosphatidylinositol-4,5-bisphosphate to a lipophilic 1,2-diacylglycerol (the phys iological activator of protein kinase C) and a water-soluble product, inositol-1,4,5-trisphosphate (Ins-1,4,5-P3). This inositol polyphosphate isomer acts as a Ca2+ -mobilizing second messenger by opening a Ca2+ channel located in a specialized intracellular pool of calcium (Joseph and Williamson, 1986).


Inositol Phosphate Inositol Trisphosphate Inositol Polyphosphate Myoinositol Phosphate Inositol Lipid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1987, Rapid formation of inositol 1,3,4,5-tetrakis-phosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215.Google Scholar
  2. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.PubMedCrossRefGoogle Scholar
  3. Biden, T. J., and Wollheim, C. B., 1986, Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin secreting RIN m5F cells, J. Biol. Chem. 261:11931 -11934.PubMedGoogle Scholar
  4. Capiod, T., Field, A. C., Ogden, D. C., and Sandford, C. A., 1987, Internal perfusion of guinea-pig hepatocytes with buffered Ca2+ or inositol 1,4,5-trisphosphate mimics noradrenaline activation of K+ and Cl-conductances, FEBS Lett. 217:247–252.PubMedCrossRefGoogle Scholar
  5. Cerdan, S., Hansen, C. A., Johanson, R., Inubushi, T., and Williamson, J. R., 1986, Nuclear magnetic resonance spectroscopic analysis of myoinositol phosphate including inositol 1,3,4,5-tetrakisphos-phate, J. Biol. Chem. 261:14676–14680.PubMedGoogle Scholar
  6. Chakrabarti, S., and Biswas, B. B., 1981, Evidence for the existence of a phosphoinositol kinase in chicken erythrocytes, Ind. J. Biochem. Biophys. 18:398–401.Google Scholar
  7. Charest, R., Prpic, V., Exton, J. H., and Blackmore, P. F., 1985, Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+, Biochem. J. 227:79–90.PubMedGoogle Scholar
  8. Connolly, T. M., Bansal, V. S., Bross, T. E., Irvine, R. F., and Majerus, P. W., 1987, The metabolism of tris-and tetraphosphates of inositol 5-phosphomonoesterase and 3-kinase enzymes, J. Biol. Chem. 262:2146–2149.PubMedGoogle Scholar
  9. Connolly, T. M., Bross, T. E., and Majerus, P. W., 1985, Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate, J. Biol. Chem. 260:7868–7874.PubMedGoogle Scholar
  10. Connolly, T. M., Lawing, W. J. Jr., and Majerus, P. W., 1986, Protein kinase C phosphorylates human platelet inositol trisphosphate 5-phosphomonoesterase, increasing the phosphatase activity, Cell 46:951–958.PubMedCrossRefGoogle Scholar
  11. Connor, J. A., Cornwall, M. C., and Williams, G. H., 1987, Spatially resolved cytosolic calcium response to angiotensin II and potassium in rat glomerulosa cells measured by digital imaging techniques, J. Biol. Chem. 262:2919–2927.PubMedGoogle Scholar
  12. Denton, R. M., and McCormack, J. G., 1985, Ca2+ transport by mammalian mitochondria and its role in hormone action, Am. J. Physiol. 249:E543–E554.PubMedGoogle Scholar
  13. Dickey, B. F., Fishman, J. B., Fines, R. E., and Navarro, J., 1987, Reconstitution of the rat liver vasopressin receptor coupled to guanine nucleotide binding proteins, J. Biol. Chem. 262:8738–8742.PubMedGoogle Scholar
  14. Downes, C. P., Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate phospho-monoesterase of the human erythrocyte membrane, Biochem. J. 203:169–177.PubMedGoogle Scholar
  15. Erneux, C., Delvaux, A., Moreau, C., and Dumont, J. E., 1986, Characterization of D-myoinositol 1,4,5-trisphosphate phosphatase in rat brain, Biochem. Biophys. Res. Commun. 134:351–358.PubMedCrossRefGoogle Scholar
  16. Fitzgerald, T. J., Uhing, R. J., and Exton, J. H., 1986, Solubilization of the vasopressin receptor from rat liver plasma membranes. Evidence for a receptor-GTP-binding protein complex, J. Biol. Chem. 261:16871–16877.PubMedGoogle Scholar
  17. Fox, A. P., Hess, P., Lansman, J. B., Nilius, B., Nowycky, M. C., and Tsien, R. W., 1986, Shifts between modes of calcium channel gating as a basis for pharmacological modulation of calcium influx in cardiac neuronal and smooth muscle derived cells, in: New Insights into Cell and Membrane Transport Processes (S. Poste and S. T. Crooke, eds.), Plenum Press, New York, pp. 99–124.CrossRefGoogle Scholar
  18. Graf, P., Dahl, S. V., and Sies, H., 1987, Sustained oscillations in extracellular calcium concentrations upon hormonal stimulation of perfused rat liver, Biochem. J. 241:933–936.PubMedGoogle Scholar
  19. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  20. Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myoinositol 1-phosphate from bovine brain, J. Biol. Chem. 255:10896–10901.PubMedGoogle Scholar
  21. Hansen, C. A., Inubushi, T., Williamson, M. T., and Williamson, J. R., 1989, Biochem. Biophys. Acta, in press.Google Scholar
  22. Hansen, C. A., Johanson, R. A., Williamson, M., and Williamson, J. R., 1987, Purification and characterization of two types of soluble inositol phosphate 5-phosphomonoesterases from rat brain, J. Biol. Chem. 262:17319–17326.PubMedGoogle Scholar
  23. Hansen, C. A., Mah, S., and Williamson, J. R., 1986, Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver, J. Biol. Chem. 261:8100–8103.PubMedGoogle Scholar
  24. Hescheler, J., Rosenthal, W., Twautwein, W., and Schultz, G., 1987, The GTP-binding protein, Go, regulates neuronal calcium channels, Nature 325:445–447.PubMedCrossRefGoogle Scholar
  25. Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Ann. Rev. Biochem. 54:205–235.PubMedCrossRefGoogle Scholar
  26. Inhorn, R. C., Bansal, V. S., and Majerus, P. W., 1987, Pathway for inositol 1,3,4-trisphosphate and 1,4-bisphosphate metabolism, Proc. Natl. Acad. Sci. USA 84:2170–2174.PubMedCrossRefGoogle Scholar
  27. Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240:917–920.PubMedGoogle Scholar
  28. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986, The inositol tris/tetrakisphosphate pathway: Demonstrations of Ins-1,4,5-P3 3-kinase activity in animal tissue, Nature 320:631–634.PubMedCrossRefGoogle Scholar
  29. Irvine, R. F., Letcher, A. J., Lander, D. J., Heslop, J. P., and Berridge, M. R., 1987, Inositol 3,4-bisphosphate and inositol 1,3-bisphosphate in GH4 cells: Evidence for complex breakdown of inositol 1,3,4-trisphosphate, Biochem. Biophys. Res. Commun. 143:353–359.PubMedCrossRefGoogle Scholar
  30. Jackson, A. P., Timmermann, M. P., Bagshaw, C. R., and Ashley, C. C., 1987, The kinetics of calcium binding to fura-2 and indo-1, FEBS Lett. 216:35–39.PubMedCrossRefGoogle Scholar
  31. Johanson, R. A., Hansen, C. A., Coll, K. E., and Wiliamson, J. R., 1988, Purification and calmodulin sensitivity of inositol 1,4,5-trisphosphate 3-kinase from rat brain, J. Biol. Chem. 263:7465–7471.PubMedGoogle Scholar
  32. Joseph, S. K., and Williams, R. J., 1985, Subcellular localization and some properties of the enzymes hydrolyzing inositol polyphosphates in liver, FEBS Lett. 180:150–154.PubMedCrossRefGoogle Scholar
  33. Joseph, S. K., and Williamson, J. R., 1986, Characteristics of inositol tris-phosphate-mediated Ca2+ release from permeabilized hepatocytes, J. Biol. Chem. 261:14658–14664.PubMedGoogle Scholar
  34. Joseph, S. K., Coll, K. E., Thomas, A. P., Rubin, R., and Williamson, J. R., 1985, The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones, J. Biol. Chem. 260:12508–12515.PubMedGoogle Scholar
  35. Kruskal, B. A., Keith, C. H., and Maxfield, F. R., 1984, Thyrotropin-releasing hormone-induced changes in intracellular [Ca2+] measured by microspectrofluorometry on individual quin2-loaded cells, J. Cell Biol. 99:1167–1172.PubMedCrossRefGoogle Scholar
  36. Kukita, M., Hirata, M. and Koga, T., 1986, Requirements of Ca2+ for the production and degradation of inositol 1,4,5-trisphosphate in macrophages, Biochim. Biophys. Acta 885:121–128.PubMedCrossRefGoogle Scholar
  37. Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V. S., and Wilson, D. B., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234:1519–1526.PubMedCrossRefGoogle Scholar
  38. Mayr, G. W. and Dietrich, W., 1987, The only inositol tetrakisphosphate detectable in avian erythrocytes is the isomer lacking phosphate at position 3: a NMR study, FEBS Lett. 213:278–282.PubMedCrossRefGoogle Scholar
  39. Monck, J. R., Reynolds, E. E., Thomas, A. P., and Williamson, J. R., 1988, Novel kinetics of single cell Ca2+ transients in stimulated hepatocytes and A10 cells measured using fura 2 and fluorescent to videomicroscopy, J. Biol. Chem. 263:4569–4575.PubMedGoogle Scholar
  40. Nabika, T., Velletri, P. A., Lovenberg, W., and Beaven, M. A., 1985, Increase in cytosolic calcium and phosphoinositide metabolism induced by angirotensin II and [Arg]vasopressin in vascular smooth muscle cells, J. Biol. Chem. 260:4661–4670.PubMedGoogle Scholar
  41. Putney, J. W. Jr., 1987, Formation and actions of calcium-mobilizing messenger inositol 1,4,5-tris phosphate, Am. J. Physiol. 252:G149–G157.PubMedGoogle Scholar
  42. Rasmussen, H., and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64:938–984.PubMedGoogle Scholar
  43. Reynolds, E. E., and Dubyak, G. R., 1986, Agonist-induced calcium transients in cultured smooth muscle cells: Measurements with fura-2 loaded monolayers, Biochem. Biophys. Res. Commun. 136:927–934.PubMedCrossRefGoogle Scholar
  44. Sasagura, T., Hirata, M., and Kuriyama, H., 1985, Dependence on Ca2+ of the activities of phospha-tidylinositol 4,5-bisphosphate phosphodiesterase and inositol 1,4,5-trisphosphate phosphatase in smooth muscles of the porcine coronary artery, Biochem. J. 231:497–503.Google Scholar
  45. Seyfred, M. A., Farrell, L. E., and Wells, W. W., 1984, Characterization of D-myoinositol 1,4,5 trisphosphate in rat liver plasma membranes, J. Biol. Chem. 259:13204–13208.PubMedGoogle Scholar
  46. Shears, S. B., Parry, J. B., Tang, E. K. Y., Irvine, R. F., Michell, R. N., and Kirk, C. J., 1987, Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate, Biochem. J. 246:139–147.PubMedGoogle Scholar
  47. Shears, S. B., Storey, D. J., Morris, A. J., Cubitt, A. B., Parry, J. B., Michell, R. H., and Kirk, C. J., 1987, Dephosphorylation of myoinositol 1,4,5-trisphosphate and myoinositol 1,3,4-tris-phosphate, Biochem. J. 242:393–402.PubMedGoogle Scholar
  48. Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver, Nature 312:374–376.PubMedCrossRefGoogle Scholar
  49. Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.PubMedGoogle Scholar
  50. Tsien, R. Y., 1980, New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404.PubMedCrossRefGoogle Scholar
  51. Tsien, R. Y., and Poenie, M., 1986, Fluorescence ratio imaging: A new window into intracellular ionic signalling, Trends in Biochem. Sci. 11:450–455.CrossRefGoogle Scholar
  52. Williams, D. A., Fogarty, K. E., Tsien, R. Y., and Fay, F. S., 1985, Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2, Nature 318:558–561.PubMedCrossRefGoogle Scholar
  53. Williamson, J. R., and Hansen, C. A., 1987, Signalling systems in stimulus-response coupling, in: Biochemical Actions of Hormones ,Vol. 14 (G. Litwack, ed.), Academic Press, Orlando, pp. 29–80.Google Scholar
  54. Williamson, J. R., Cooper, R. H., Joseph, S. K., and Thomas, A. P., 1985, Inositol trisphosphate and diacylglycerol as intracellular signal messengers, Am. J. Physiol. 248:C203–C216.PubMedGoogle Scholar
  55. Williamson, J. R., Hansen, C. A., Johanson, R. A., Coll, K. E., and Williamson, M., 1988, Formation and metabolism of inositol phosphates: The inositol tris/tetrakisphosphate pathway, in: Regulation of Cellular Calcium Homeostasis (D. R. Pfeiffer, ed.), Plenum Press, pp. 183–196.Google Scholar
  56. Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H., 1986, Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319:600–602.PubMedCrossRefGoogle Scholar
  57. Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H., 1987, Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat-hepatocytes, Cell Calcium 8:79–100.PubMedCrossRefGoogle Scholar
  58. Yamaguchi, K., Hirata, M., and Kuriyama, H.. 1987, Calmodulin activates inositol 1,4,5-trisphosphate 3-kinase activity in pig aortic smooth muscle, Biochem. J. 244:787–791.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • John R. Williamson
    • 1
  • Roy A. Johanson
    • 1
  • Carl A. Hansen
    • 1
  • Jonathan R. Monck
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations