Effects of cAMP-Dependent, Calmodulin-Dependent, and C-Type Protein Kinases on Platelet Calcium Transport

  • William L. Dean
  • Samuel Evans Adunyah
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Cyclic AMP (cAMP) and Ca2+ are interrelated intracellular messengers known to modify cellular function through specific protein kinases (Cohen, 1982). In platelets, increases in cAMP inhibit platelet activation, an effect that is reversed by inhibitors of adenylate cyclase (Salzman, 1972; Chianget al., 1975), while Ca2+ is involved in activation rather than inhibition of platelet function (Detwileret al., 1978). In addition to cAMP-and calmodulindependent protein kinases, a third kinase is intimately involved in platelet activation—protein kinase C (Kishimotoet al., 1980). This kinase is activated by diacylglycerol, a product of phospholipase C—mediated hydrolysis of phosphatidylinositol.

Keywords

Oligomer Polypeptide Thrombin Diol Inositol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adunyah, S. E., and Dean, W. L., 1985, Inositol trisphosphate-induced Ca2+ release from human platelet membranes, Biochem. Biophys. Res. Commun. 128:1274–1280.PubMedCrossRefGoogle Scholar
  2. Adunyah, S. E., and Dean, W. L., 1986a, Ca2+ transport in human platelet membranes: kinetics of active transport and passive release, J. Biol. Chem. 261:3122–3127.PubMedGoogle Scholar
  3. Adunyah, S. E., and Dean, W. L., 1986b, Effects of sulfhydryl reagents and other inhibitors on Ca2+ transport and inositol trisphosphate-induced Ca2+ release from human platelet membranes, J. Biol. Chem. 261:13071–13075.PubMedGoogle Scholar
  4. Chiang, T. M., Beachy, E. H., and Kang, A., 1975, Interaction of a chick skin collagen fragment with human platelets, J. Biol. Chem. 250:6916–6922.PubMedGoogle Scholar
  5. Cohen, P., 1982, The role of protein phosphorylation in neural and hormonal control of cellular activity, Nature 296:613–620.PubMedCrossRefGoogle Scholar
  6. Connolly, T. M., Lawing, Jr., W. J., and Majerus, P. W., 1986, Protein kinase C phosphorylates human platelet inositol trisphosphate 5′-phosphomonoesterase, increasing the phosphatase activity, Cell 46:951–958.PubMedCrossRefGoogle Scholar
  7. Dean, W. L., 1984, Purification and reconstitution of a Ca2+ pump from human platelets, J. Biol. Chem. 259:7343–7348.PubMedGoogle Scholar
  8. Dean, W. L., and Sullivan, D. M., 1982, Structural and functional properties of a Ca2+ -ATPase from human platelets, J. Biol. Chem. 257:14390–14394.PubMedGoogle Scholar
  9. Detwiler, T. C., Charo, I. F., and Feinman, R. D., 1978, Evidence that calcium regulates platelet function, Thrombos. Haemostas. 40:207–212.Google Scholar
  10. Gasser, J. Th., Chesi, M., and Carafoli, E., 1986, Concerted phosphorylation of the 26 kDa phospho-lamban oligomer and of the low molecular weight phospholamban subunits, Biochemistry 25:7615–7623.PubMedCrossRefGoogle Scholar
  11. Gopalakrishna, R., and Anderson, W. B., 1982, Ca2+ -induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography, Biochem. Biophys. Res. Commun. 104:830–836.PubMedCrossRefGoogle Scholar
  12. Kaser-Glanzmann, R., Jakabova, M., George, J. N., and Luscher, E. F., 1977, Stimulation of calcium uptake in platelet membrane vesicles by cAMP and protein kinase, Biochim. Biophys. Acta 466:429–440.PubMedCrossRefGoogle Scholar
  13. Kikkawa, U., Takai, T., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium-stimulated phospholipid-dependent protein kinase from rat brain, J. Biol. Chem. 257:13341–13348.PubMedGoogle Scholar
  14. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid dependent protein kinase by diacylglycerol, its possible relation to phosphati-dylinositol turnover, J. Biol. Chem. 255:2273–2276.PubMedGoogle Scholar
  15. Laemmli, U. K., 1970, Synthesis of T4 phage proteins, Nature 227:680–685.PubMedCrossRefGoogle Scholar
  16. Le Peuch, C. J., Haiech, J., and Demaille, J. G., 1979, Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cAMP-dependent and calcium-calmodulin-dependent phosphoryl-ations, Biochemistry 18:5150–5157.PubMedCrossRefGoogle Scholar
  17. Le Peuch, C. J., Le Peuch, D. A. M., Katz, S., DeMaille, J., Hinkle, M. T., Bredoux, R., Enouf, J., Levy-Toledano, S., and Caen, J., 1983, Regulation of calcium accumulation and efflux from platelet membrane vesicles: possible role for cAMP-dependent phosphorylation and calmodulin, Biochim. Biophys. Acta 731:456–464.PubMedCrossRefGoogle Scholar
  18. Menashi, S., Davis, C., and Crawford, N., 1982, Calcium uptake associated with an intracellular membrane fraction prepared from human blood platelets by high-voltage, free-flow electrophoresis, FEBS Lett. 140:298–302.PubMedCrossRefGoogle Scholar
  19. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature 308:693–698.PubMedCrossRefGoogle Scholar
  20. O’Rourke, F. A., Halenda, S. P., Zavoico, G. B., and Feinstein, M. B., 1985, Inositol 1,4,5-tris-phosphate releases Ca2+ from a Ca2+ -transporting membrane vesicle fraction derived from human platelets, J. Biol. Chem. 260:956–962.PubMedGoogle Scholar
  21. Salzman, E. W., 1972, Cyclic AMP and platelet function, N. Engl. J. Med. 286:358–363.PubMedCrossRefGoogle Scholar
  22. Sano, K., Takai, Y., Yamanishi, J., and Nishizuka, Y., 1983, A role of Ca2+ -activated phospholipid-dependent protein kinase in human platelet function, J. Biol. Chem. 258:2010–2013.PubMedGoogle Scholar
  23. Tada, M., Kirchberger, M. A., and Katz, A. M., 1975, Phosphorylation of a 22,000 Dalton component of the cardiac sarcoplasmic reticulum by cAMP-dependent protein kinase, J. Biol. Chem. 250:2640–2647.PubMedGoogle Scholar
  24. Touqui, L., Rothhut, B., Shaw, A. M., Fradin, A., Vargaftig, B., and Russo-Marie, F., 1986, Platelet activation-a role for a 40K anti-phospholipase A2 protein indistinguishable from lipocortin, Nature 321:177–179.PubMedCrossRefGoogle Scholar
  25. Ware, J. A., Johnson, P. C., Smith, M., and Salzman, E. W., 1985, Aequorin detects increases in cytoplasmic calcium in platelets stimulated with phorbol esters or diacylglycerol, Biochem. Biophys. Res. Commun. 133:98–104.PubMedCrossRefGoogle Scholar
  26. Wegener, A. D., Simmerman, H. K. B., Liepnieks, J., and Jones, L., 1986, Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles, J. Biol. Chem. 261:5154–5159.PubMedGoogle Scholar
  27. Zavoico, G. B., Halenda, S. P., Sha’afi, R. I., and Feinstein, M. B., 1985, Phorbol myristate acetate inhibits thrombin-stimulated Ca2+ mobilization and phosphatidylinositol 4,5-bisphosphate hydrol ysis in human platelets, Proc. Natl. Acad. Sci. USA 82:3859–3862.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • William L. Dean
    • 1
  • Samuel Evans Adunyah
    • 1
  1. 1.Department of BiochemistryUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations