Advertisement

Hormonal Inhibition of the Liver Plasma Membrane (Ca2+ —Mg2+ ) ATPase is Mediated by a Gs-like Protein

  • Sophie Lotersztajn
  • Catherine Pavoine
  • Ariane Mallat
  • Dominique Stengel
  • Paul Insel
  • Françoise Pecker
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

The calcium pump in liver plasma membrane, which is supported by a high-affinity calcium-activated ATPase (Lotersztajnet al., 1981, 1982; Pavoineet al., 1987), is responsible for extrusion of calcium out of the cell. We have shown that the liver Ca2+ pump is specifically inhibited by pharmacological concentrations of glucagon (Lotersztajnet al., 1984, 1985). This inhibition is independent of adenylate cyclase activation (Lotersztajnet al., 1984) and is probably unrelated to activation of phospholipase C by nanomolar concentrations of glucagon (Wakelamet al., 1986). The liver Ca2+ pump is also regulated by two proteins, an activator that directly stimulates activity of the purified (Ca2+ —Mg2+ ) ATPase (Lotersztajnet al., 1981), and a 30,000-Da inhibitor that interacts with the purified enzyme only in the presence of the activator and Mg2+ (Lotersztajn and Pecker, 1982) and that mediates enzyme inhibition by glucagon (Lotersztajnet al ., 1985). The question arose as to the possible analogy between these activator and inhibitor proteins of (Ca2+ —Mg2+ )ATPase and guanine nucleotide-binding (G) proteins.

Keywords

ATPase Activity Adenylate Cyclase Cholera Toxin Malachite Green Pertussis Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksamit, R. P., Backlund, P. S. Jr., and Cantoni, G. L., 1985, Cholera toxin inhibits chemotaxis by a cAMP-independent mechanism, Proc. Nad. Acad. Sci. USA 82:7475–7479.CrossRefGoogle Scholar
  2. Birnbaumer, L., Codina, J., Mattera, R., Cerione, R. A., Hildebrandt, J. D., Sunyer, T., Rojas, F. J., Caron, M. G., Lefkowitz, R. J., and Iyengar, R., 1985, Regulation of hormone receptors and adenylyl cyclases by guanine nucleotide binding N proteins, Recent Prog. Hormone Res. 41: 41–99.Google Scholar
  3. Bockaert, J., Deterre, P., Pfister, C., Guillon, G., and Chabre, M., 1985, Inhibition of hormonallyregulated adenylate cyclase by the beta gamma subunit of transducin, EMBO J. 4:1413–1417.PubMedGoogle Scholar
  4. Bourne, H. R., 1986, One molecular machine can transduce diverse signals, Nature 321:814–816.PubMedCrossRefGoogle Scholar
  5. Cerione, R. A., Codina, J., Kilpatrick, B. F., Staniszewski, C., Gierschik, P., Somers, R. L., Spiegel, A. M., Birnbaumer, L., Caron, M. G., and Lefkowitz, R. J., 1985, Transducin and inhibitory nucleotide regulatory protein inhibit the stimulatory nucleotide regulatory protein mediated stimulation of adenylate cyclase in phospholipid vesicle systems, Biochemistry 24:4499–4503.PubMedCrossRefGoogle Scholar
  6. Georges, S. K., Uttenthal, L. O., Ghiglione, M., and Bloom, S. R., 1985, Molecular forms of glucagonlike peptides in man, FEBS Lett. 192:275–278.CrossRefGoogle Scholar
  7. Gilman, A. G., 1984, G Protein and dual control of adenylate cyclase, Cell 36:577–579.PubMedCrossRefGoogle Scholar
  8. Heyworth, C. M., Whetton, A. D., Wong, S., Martin, B. R., and Houslay, M. D., 1985, Insulin inhibits the cholera-toxin-catalysed ribosylation of a Mr-25000 protein in rat liver plasma membranes, Biochem. J. 228:593–603.PubMedGoogle Scholar
  9. Imboden, J. B., Shoback, D. M., Pattison, G., and Stobo, J. D., 1986, Cholera toxin inhibits the T cell antigen receptor mediated increase in inositol trisphosphate and cytoplasmic free calcium, Proc. Nad. Acad. Sci. USA 83:5673–5677.CrossRefGoogle Scholar
  10. Kallner, A., 1975, Determination of phosphate in serum and urine by a single step malachite-green method, Clin. Chim. Acta. 59:35–39.PubMedCrossRefGoogle Scholar
  11. Levitski, A., 1987, Regulation of adenylate cyclase by hormones and G proteins, FEBS Lett. 211: 113–118.CrossRefGoogle Scholar
  12. Lotersztajn, S., and Pecker, F., 1982, A membrane-bound protein inhibitor of high affinity Ca ATPase in rat liver plasma membranes, J. Biol. Chem. 257:6638–6641.PubMedGoogle Scholar
  13. Lotersztajn, S., Hanoune, J., and Pecker, F., 1981, A high affinity calcium-stimulated magnesium dependent ATPase in rat liver plasma membranes, J. Biol. Chem. 256:11209–11215.PubMedGoogle Scholar
  14. Lotersztajn, S., Mavier, P., Clergue, J., Dhumeaux, D., and Pecker, F., 1982, Human liver plasma membrane Ca ATPase: Identification and sensitivity to calcium antagonists, Hepatology 2:843–848.PubMedCrossRefGoogle Scholar
  15. Lotersztajn, S., Epand, R., Mallat, A., and Pecker, F., 1984, Inhibition by glucagon of the calcium pump in liver plasma membranes, J. Biol. Chem. 259:8195–8201.PubMedGoogle Scholar
  16. Lotersztajn, S., Mallat, A., Pavoine, C., and Pecker, F., 1985, The inhibition of liver plasma membrane (Ca2+ -Mg2+ )ATPase, J. Biol. Chem. 260:9692–9698.PubMedGoogle Scholar
  17. Lotersztajn, S., Pavoine, C., Mallat, A., Stengel, D., Insel, P. A., and Pecker, F., 1987, Cholera toxin blocks glucagon-mediated inhibition of the liver plasma membrane (Ca2+ -Mg2+ )ATPase, J. Biol. Chem. 262:3114–3117.PubMedGoogle Scholar
  18. Maguire, M. E., and Erdos, J. J., 1980, Inhibition of magnesium uptake by ß-adrenergic agonists and prostaglandin E1 is not mediated by cAMP, J. Biol. Chem. 255:1030–1035.PubMedGoogle Scholar
  19. Mallat, A., Pavoine, C., Lotersztajn, S., and Pecker, F., 1985, Inhibition of the Ca pump in liver plasma membranes by glucagon is due to a metabolite of the hormone, Fed. Proc. 44:1392.Google Scholar
  20. Mallat, A., Pavoine, C., Dufour, M., Lotersztajn, S., Bataille, D., and Pecker, F., 1987, A glucagon fragment is responsible for inhibition of the liver Ca2+ pump by glucagon, Nature 325:620–622.PubMedCrossRefGoogle Scholar
  21. Neville, D. M., 1968, Isolation of an organ specific protein antigen from cell-surface membrane of rat liver, Biochim. Biophys. Acta. 154:540–552.PubMedGoogle Scholar
  22. Patzelt, C., and Schiltz, E., 1984, Conversion of proglucagon in pancreatic alpha cells: The major end products are glucagon and a single peptide, the major proglucagon fragment that contains two glucagon sequences, Proc. Natl. Acad. Sci. USA 81:5007–5011.PubMedCrossRefGoogle Scholar
  23. Pavoine, C., Lotersztajn, S., Mallat, A., and Pecker, F., 1987, The high affinity (Ca2+ -Mg2+ )ATPase in liver plasma membranes is a Ca2+ pump, J. Biol. Chem. 262:5113–5118.PubMedGoogle Scholar
  24. Spiegel, A. M., 1987, Signal transduction by guanine nucleotide binding proteins, Mol. Cell Endocrinol. 49:1–16.PubMedCrossRefGoogle Scholar
  25. Steiner, D. F., Quinn, P. S., Chan, S. J., Marsh, J., and Tager, H. S., 1980, Processing mechanism in the biosynthesis of proteins, Ann. N.Y. Acad. Sci. 343:1–16.PubMedCrossRefGoogle Scholar
  26. Taylor, C. W., and Merrit, J. E., 1986, Receptor coupling to polyphosphoinositine turnover: A parallel with the adenylate cyclase system, Trends Pharmacol. Sci. 7:238–242.CrossRefGoogle Scholar
  27. Wakelam, M. J. O., Murphy, G. J., Hruby, G. J., and Houslay, M. D., 1986, Activation of two signal transduction systems in hepatocytes by glucagon, Nature 323:68–71.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Sophie Lotersztajn
    • 1
  • Catherine Pavoine
    • 1
  • Ariane Mallat
    • 1
  • Dominique Stengel
    • 1
  • Paul Insel
    • 1
  • Françoise Pecker
    • 1
  1. 1.INSERM U-99Hôpital Henri MondorCréteilFrance

Personalised recommendations