Advertisement

Applications of CPBS to Cancer Hazard Identification

  • Julia Pet-Edwards
  • Yacov Y. Haimes
  • Vira Chankong
  • Herbert S. Rosenkranz
  • Fanny K. Ennever

Abstract

The field of genetic toxicology finds itself at a crossroads. On the one hand, the premise of the somatic mutation theory of cancer, which provides a scientific basis for the development of short-term tests for predicting cancers, has been amply vindicated by the discovery of oncogene activation. On the other hand, however, recent NTP-sponsored studies have cast doubt upon the performance of short-term tests as predictors of carcinogenicity (Tennant et al., 1987). Analysis of the NTP results by the CPBS shows that this is an incorrect conclusion resulting from an oversimplification (Rosenkranz and Ennever, 1988a). Also, it appears that we have no choice but to continue using short-term tests since the other alternatives are (a) not to test but to wait for untoward effects in our exposed human population and (b) to continue relying solely on animal bioassays.

Keywords

Prior Probability National Toxicology Program Fourth Test Genetic Toxicology Methyl Isocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby, J., 1986, “The prospects for a simplified and internationally harmonized approach to the detection of possible human carcinogens and mutagens,” Mutagenesis, 1:3–16.CrossRefGoogle Scholar
  2. Chankong, V., Haimes, Y. Y., Rosenkranz, H. S., and Pet-Edwards, J., 1985, “The Carcinogenicity Prediction and Battery Selection (CPBS) method: A Bayesian approach,” Mutation Res. 153:135–166.Google Scholar
  3. Dearfield, K. L., Abnerathy, C. O., Ottley, M. S., Brantner, J. H., and Hayes, P. F., 1988, “Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity,” Mutation Res., 195:45–47.Google Scholar
  4. Ennever, F. K., and Rosenkranz, H. S., 1986a, “Predicting the carcinogenicity of the aromatic amine derivatives tested in the second UKEMS Collaborative Study,” Mutagenesis, 1:119–123.CrossRefGoogle Scholar
  5. Ennever, F. K., and Rosenkranz, H. S., 1986b, “Short-term test results for NTP noncarcinogenesis: An alternate, more predictive battery,” Environ. Mutagenesis, 8:849–865.CrossRefGoogle Scholar
  6. Ennever, F. K., and Rosenkranz, H. S., 1986c, “Evaluating batteries of short-term genotoxicity tests,” Mutagenesis, 1:293–298.CrossRefGoogle Scholar
  7. Ennever, F. K., and Rosenkranz, H. S., 1987a, “Evaluating the potential genotoxic carcinogenicity of methyl isocyanate,” Toxical. Appl. Pharmacol., 91:502–505.CrossRefGoogle Scholar
  8. Ennever, F. K., and Rosenkranz, H. S., 1987b, “Selection of batteries in an industrial setting,” Environ. Mutagenesis, 9:359–361.Google Scholar
  9. Ennever, F. K., and Rosenkranz, H. S., 1988a, “The influence of the proportions of carcinogens on the cost-effectiveness of short-term tests,” Mutation Res., 197:1–13.CrossRefGoogle Scholar
  10. Ennever, F. K., and Rosenkranz, H. S., 1988b, “Methodologies for interpretations of short-term test results which may allow reduction in the use of animals in carcinogenicity testing,” Toxicol. Ind. Health, 4:137–149.Google Scholar
  11. Ennever, F. K., Noonan, T. J., and Rosenkranz, H. S., 1987, “The predictivity of animal bioassays and short-term genotoxicity test for carcinogenicity and noncarcinogenicity to humans,” Mutagenesis, 2:73–78.CrossRefGoogle Scholar
  12. Gold, L. S., de Veciana, M., Backman, G. M., Magaw, R., Lopipero, Pl., Smith, M., Hooper, N. K., Havender, W. R., Bernstein, L., Peto, R., Pike, M. C., and Ames, B. N., 1984, “A carcinogenic potency database of the standardized results of animal bioassays,” Environ. Health Perspect., 58:9–319.CrossRefGoogle Scholar
  13. Griesemer, R. A., Harper, C., Calabrese, E., Michalopoulos, G., Rosenkranz, H. S., Schneider-man, M., and Sipes, I. G., 1985, “Report to the U.S. Consumer Product Safety Commission by the Chronic Hazard Advisory Panel on Di-(2-Ethylhexyl)phthalate.Google Scholar
  14. Haimes, Y. Y., Chankong, V., Pet-Edwards, J., and Rosenkranz, H. S., 1987, “Carcinogenicity prediction and battery selection procedure: An in depth analysis of cyclamate and its major metabolite cyclohexylamine,” Molec. Toxicol., 1:49–60.Google Scholar
  15. Havel, R. J., Griesemer, R. A., Lagakos, S. W., Munro, I. C., Pitot, H. C., Rosenkranz, H. S., Stellman, S., Tardiff, R. G., Thomas, D. W., Ward, J. N., Weinhouse, S., and Williams G. M., 1985, Evaluation of Cyclamates for Carcinogenicity, National Academy of Sciences Press, Washington D.C.Google Scholar
  16. Hu, S., 1985, “A multiobjective risk methodology for the optimal selection of a battery of tests,” M.S. thesis, Case Western Reserve, University.Google Scholar
  17. IARC, 1986, “IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humains, Some Chemicals Used in Plastics and Elastomers,” Vol. 39, pp. 41–66, International Agency for Research on Cancer, Lyon, France.Google Scholar
  18. IARC, 1988, “IARC Monograph Supplement 7,” International Agency for Research on Cancer, Lyon, France.Google Scholar
  19. Jerina, D. M., Lehr, R. E., Yagi, H., Hernandez, O., Dansette, P. M., Wislocki, P. G., Wood, A. W., Chang, R. L., Levin, W., and Conney, A. H., 1976, “Mutagenicity of benzo(a)pyrene derivatives and the description of a quantum mechanical model which predicts the ease of carbonium ion formation from diol epoxides,” in F. J. de Serres, J. R. Fouts, J. R. Bend, and R. M. Philpot (eds.): In Vitro Metabolic Activation in Mutagenesis Testing, Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 159–178.Google Scholar
  20. Lave, L. B., Ennever, F. K., Rosenkranz, H. S., and Omenn, G. S., 1988, “Information value of the rodent bioassay,” Nature, 336:631–633.CrossRefGoogle Scholar
  21. Matsushima, T., 1987, Chemical Safety Evaluation in Japan, 175.Google Scholar
  22. Miller, J. A., 1970, “Carcinogenesis by chemicals: An overview,” Cancer Res., 30:559–576.Google Scholar
  23. Miller, J. A., and Miller, E. C., 1977, “Ultimate chemical carcinogens as reactive mutagenic electrophiles,” in Origins of Human Cancer, H. H. Hiatt, J. D. Watson, and J. A. Winsten (eds.), Cold Spring Harbor Laboratory: Cold Spring Harbor, pp. 605–627.Google Scholar
  24. Nesnow, S., Argus, M., Bergman, H., Chu, K., Frith, C., Helmes, T., McGaughey, R., Ray, V., Slaga, T. J., Tennant, R., and Weisburger, E., 1987, “Chemical carcinogens: A review and analysis of the literature of selected chemicals and the establishment of the Gene-Tox Carcinogen Data Base,” Mutation Res., 185:1–195.Google Scholar
  25. Paladja, M., and Rosenkranz, H. S., 1985, “Assembly and preliminary analysis of a genotoxicity data base for predicting carcinogens,” Mutation Res., 153:79–134.Google Scholar
  26. Pet-Edwards, J., 1986, “Selection and interpretation of conditionally independent tests for binary predictions: A Bayesian approach,” Ph.D. dissertation, Case Western Reserve University, Cleveland, Ohio.Google Scholar
  27. Pet-Edwards, J., Chankong, V., Rosenkranz, H. S., and Haimes, Y. Y., 1985a, “Application of the carcinogenicity prediction and battery selection (CPBS) methodology to the Gene-Tox data base,” Mutation Res., 153:187–200.Google Scholar
  28. Pet-Edwards, J., Rosenkranz, H. S., Chankong, V., and Haimes, Y. Y., 1985b, “Cluster analysis in predicting the carcinogenicity of chemicals using short-term assays,” Mutation Res., 153:167–185.Google Scholar
  29. Rosenkranz, H. S., and Ennever, F. K., 1987, “Evaluation of the genotoxicity of theobromine and caffeine,” Food Chem. Toxicol., 25:247–251.CrossRefGoogle Scholar
  30. Rosenkranz, H. S., and Ennever, F. K., 1988a, “New approaches to battery selection and interpretation,” in: New Trends in Genetic Toxicology, G. Jolies and A. Cordier (eds.), Academic Press, New York, in press.Google Scholar
  31. Rosenkranz, H. S., and Ennever, F. K., 1988b, “Quantifying genotoxicity and nongenotoxicity,” Mutation Res., 205:59–67.CrossRefGoogle Scholar
  32. Rosenkranz, H. S., and Klopman, G., 1987, “Computer automated structure evaluation of the carcinogenicity of N-nitrosothiazolidine 4-carboxylic acid,” Chem. Toxicol., 25:253–256.CrossRefGoogle Scholar
  33. Rosenkranz, H. S., Ennever, F. K., Chankong, V., Pet-Edwards, J., and Haimes, Y. Y., 1986a, “An objective approach to the deployment of short-term tests predictive of carcinogenicity,” Cell Biol. Toxicol., 2:425–440.CrossRefGoogle Scholar
  34. Rosenkranz, H. S., Frierson, M. R., and Klopman, G., 1986b, “Computer-automated prediction of the mutagenicity of benzidine, 4,4″-diaminoterphenyl, 4-dimethylaminoazobenzene and 4-cyanodimethylaniline: Comparison with the results of the Second UKEMS Collaborative Study,” Mutagenesis, 1:275–282.CrossRefGoogle Scholar
  35. Rosenkranz, H. S., Frierson, M. R., and Klopman, G., 1988, “Predicting the carcinogenicity of pyrene, benzo(a)pyrene, 2-acetylaminofluorene and 4-acetylaminofluorene using newly developed computer based methods,” in: Evaluation of Short-Term Tests for Carcinogens, Report of the International Programme on Chemical Safety’s Collaborative Study on in vivo Assays, J. Ashby, et al. (eds.), Cambridge University Press, in press.Google Scholar
  36. Tennant, R. W., Margolin, B. H., Shelby, M. D., Zeiger, E., Haseman, J. K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R., 1987, “Prediction of chemical carcinogenicity in rodents from in vitro genotoxicity assays,” Science, 236:933–941.CrossRefGoogle Scholar
  37. Weisburger, J. H., and Williams, G. M., 1981, “Carcinogen testing: Current problems and new approaches,” Science, 214:401–407.CrossRefGoogle Scholar
  38. Yander, G., Lin, G. H. Y., and Mermelstein, R., 1987, “Selection of batteries in an industrial setting (Letter to the Editor),” Environ. Mutagenesis, 9:357–358.CrossRefGoogle Scholar
  39. Zeiger, E., 1987, “Carcinogenicity of mutagens: Predictive capability of the Salmonella mutagenesis assay for rodent carcinogenicity,” Cancer Res., 47:1287–1296.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Julia Pet-Edwards
    • 1
  • Yacov Y. Haimes
    • 1
  • Vira Chankong
    • 2
  • Herbert S. Rosenkranz
    • 2
  • Fanny K. Ennever
    • 2
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Case Western Reserve UniversityClevelandUSA

Personalised recommendations